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We show that under tension a classical many-body system with only isotropic pair interactions in a
crystalline state can, counterintuitively, have a negative Poisson’s ratio, or auxetic behavior. We derive the
conditions under which the triangular lattice in two dimensions and lattices with cubic symmetry in three
dimensions exhibit a negative Poisson’s ratio. In the former case, the simple Lennard-Jones potential can
give rise to auxetic behavior. In the latter case, a negative Poisson’s ratio can be exhibited even when the
material is constrained to be elastically isotropic.
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Materials with a negative Poisson’s ratio (NPR), the so-
called ‘‘auxetics,’’ are those that when stretched in a par-
ticular direction expand in an orthogonal direction. NPR
behavior is a counterintuitive material property that has
been observed only in a handful of materials that often
have intricate structures and characteristic lengths much
larger than an atomic bond length. NPR materials have a
great deal of technological potential, for example, to in-
crease the sensitivity of piezoelectric transducers [1], as
components in microelectromechanical systems, and as
shock absorbers and fasteners [2,3].

A negative Poisson’s ratio had not been observed in any
elastically isotropic material until the discovery of certain
foam structures with reentrant structures [4]. NPR behavior
has also been observed in multiple-length-scale laminate
composites [5], polymeric and metallic foams [6], inverted
honeycomb and other structures fabricated using soft li-
thography [2], and scaffold structures made out of springs,
hinges, and rods [7]. It has been found in cubic atomic
solids when they are stretched in the [110] direction [8].

In this Letter, we derive conditions for which NPR
behavior is exhibited in classical many-body systems;
this continues a research program in which interparticle
interactions are sought for targeted material properties.
Examples of such inverse problems include optimization
of pair potentials to give rise to negative thermal expansion
[9], and a method to derive potentials that yield targeted
classical ground states [10].

We report here that under tension two- and three-
dimensional systems with isotropic two-body interaction
potentials can show NPR behavior in the crystal phase as
long as certain linear equalities and inequalities involving
the interaction potential are satisfied. This is an unexpected
result, since an inherently anisotropic behavior arises from
isotropic interactions; indeed, most previously discovered
NPR materials exhibit complex, carefully designed aniso-
tropic interactions. We show this to be the case at zero
temperature for the elastically isotropic triangular lattice in

two dimensions, and for the fcc lattice in three dimensions.
In the latter case, NPR behavior is exhibited even when the
material is constrained to be elastically isotropic. We first
describe the calculation of the Poisson’s ratio for any
dimension. Then, we present results for the two- and
three-dimensional cases, including the elastic constants
and NPR constraints. In order to demonstrate that NPR
behavior is achievable at positive pressure, we present an
example in which this is achieved by including three-body
interactions in two or three dimensions.

Consider a set of N � 1 particles, with positions frng
(n � 0), that occupy a particular Bravais lattice in a state of
zero strain. Under strain that is uniform throughout space,
the new positions of the particles are

 x n � �I� E� � rn; (1)

where I is the unit tensor in d dimensions and E is the
second-rank strain tensor with components "ij. The latter is
constrained to be symmetric (i.e., "ij � "ji) in order to
remove simple rotation. For simplicity, we take the origin
to be at r0, and thus the energy per particle of the system
can be written as

 u �
1

2

XN
n�1

��jxnj�; (2)

where � is the pair interaction potential and N is the total
number of particles excluding that at the origin. At zero
temperature, the enthalpy and Gibbs free energy per parti-
cle are equivalent and equal to g � u� pv, where p �
�du=dv, and v is the d-dimensional specific volume. The
equilibrium volume is found by minimizing g with respect
to v at fixed p. In order to calculate the second-order
elastic constants and Poisson’s ratio, g is expanded to
quadratic order in the strain tensor "ij. The expansion is
taken around equilibrium; thus, it contains no linear terms,
and can be written as g ’ g0 �

v
2 �ijkl"ij"kl, where g0 is the

zero-strain free energy, �ijkl are the second-order elastic
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constants of the system [11], and the Einstein convention is
used. The Poisson’s ratio � � �"T="L is calculated by
imposing a strain, "L � "ijninj, and minimizing the free
energy to find the strain in a transverse direction, "T �
"ijn0in

0
j, where n and n0 are unit vectors in the original and

transverse directions, respectively.
The number of independent elastic constants is deter-

mined by the dimensionality and rotational symmetry of
the lattice in question. For example, in two dimensions,
square lattices have three independent elastic constants,
and triangular lattices are ‘‘elastically isotropic’’ (i.e., elas-
tic properties are independent of direction) and thus have
only two [11]. Lattices with cubic symmetry have three
independent elastic constants, the least of any crystal
structure in three dimensions.

Two dimensions: Triangular lattice example.—This
analysis can be applied to any structure in two dimensions,
but perhaps the simplest case is the triangular lattice. The
free energy (neglecting g0, an irrelevant offset) is

 gtri�vf2�1�"xx�"yy�
2��2��"xx�"yy�

2�4"2
xy	g; (3)

where �1 and �2 are the elastic constants and v is the two-
dimensional ‘‘volume,’’ namely, the area. Since both terms
are quadratic invariants of the strain tensor, g is rotationally
invariant. This property holds true of the Poisson’s ratio,
which is

 �tri �
2�1 � �2

2�1 � �2
: (4)

The free energy expansion must be a positive-definite
quadratic form, or else the lattice is unstable. Thus, the
eigenvalues of the Hessian matrix of gtri must be positive.
This is true if and only if �1 > 0 and �2 > 0. The Poisson’s
ratio must thus fall within the range �1< �tri < 1. By
expanding Eq. (2) as well as the area to quadratic order
in the strain tensor, we obtain the elastic constants in terms
of the first and second derivatives of the pair potential,
evaluated at the neighbor distances of the lattice:
 

�1 �
1

32v

XN
i�1

�jrij2�00�jrij� � jrij�0�jrij�	;

�2 �
1

4v

XN
i�1

��
x2
i y

2
i

jrij2

�
�00�jrij� �

�
jrij
2
�
x2
i y

2
i

jrij3

�
�0�jrij�

�
;

(5)

where the sum is over every particle except that at the
origin, and xi’s and yi’s are the Cartesian coordinates of the
particles in the unstrained lattice. The Poisson’s ratio,
given in Eq. (4), can be written as

 �tri �
1� 2p�T
3� 2p�T

; (6)

where �T and p are defined by

 

1

�T
�

�
�v

dp
dv

�
�

1

8v

XN
i�1

�jrij2�00�jrij� � jrij�0�jrij�	;

and p� �
du
dv
� �

1

4v

XN
i�1

jrij�0�jrij�: (7)

Thus, the Poisson’s ratio, given in Eq. (6), cannot be
negative as long as p > 0, since for mechanical stability
�T > 0. Importantly, it is only for negative pressures, i.e.,
when the system is under tension, that �tri can be negative.

Even if the interaction potential extends only to the
nearest neighbor in the triangular lattice and is zero beyond
it, NPR behavior can be achieved at negative pressure, as
long as

 �0�a�> 0; �0�a�< a�00�a�< 5�0�a�; (8)

where a �
���������������
2v=

���
3
pq

is the lattice constant. Figure 1 depicts
these inequalities in a parameter space of�0�a� and �00�a�.
In the case that the potential extends beyond the first
neighbor, corresponding inequalities to those in Eq. (8)
can be found, involving the first and second derivatives of
the potential at relevant neighbor distances.

To understand intuitively why NPR behavior only oc-
curs at negative pressure, consider the function ��r2� �
��r�, which is the interaction potential rewritten in terms
of the square of the interparticle distance. A condition for
lattice stability is �00�a2�> 0, which physically means that
the ‘‘effective repulsive spring constant’’ between nearest-
neighbor particles must decrease with distance. Thus, if the
bonds between neighboring particles are thought of as
springs with zero rest length, an imposed outward strain
has the effect of weakening the effective spring constants

FIG. 1 (color online). Regime of negative Poisson’s ratio in a
triangular lattice, where the pair potential extends to the first
neighbor only. The parameter space is composed of the first and
second derivatives of the pair potential evaluated at the nearest-
neighbor distance. In the continuously shaded region, �tri, given
in Eq. (4), is negative. In the grid-shaded region, the lattice is
stable. The overlap region is given in Eq. (8). The pressure is
positive to the left of the dotted line and negative to the right.
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of the bonds in the transverse direction. Under positive
pressure, such a weakening causes a contraction, but under
tension it causes an expansion.

When � is taken to be the well-known 12-6 Lennard-
Jones (LJ) potential, given by �LJ�r� � ���b=r�12 �
2�b=r�6	, there is a range of lattice constants for which
NPR behavior is exhibited, namely, 1:0596b < a <
1:0870b, as demonstrated in Fig. 2. This corresponds to a
pressure range of �4:6363��=b2�> p>�4:8516��=b2�.
Therein, the Poisson’s ratio takes on values of 0 through
�1, the lower bound for stability. Note that a sufficient
number of neighboring particles are included to accurately
calculate the energy. That the Poisson’s ratio is negative in
this system is a surprising result, since the simple LJ
potential has been studied extensively, and was not thought
to exhibit this behavior.

Other two-dimensional crystals have been studied for a
general �, including the square lattice and non-Bravais
crystals such as the honeycomb and kagome. In all cases,
NPR behavior was only found under tension.

Three dimensions: Lattices with cubic symmetry.—Here
we extend the previous analysis to lattices with cubic
symmetry. The most common examples of these are the
face-centered cubic (fcc), the body-centered cubic (bcc),
and the simple cubic lattices. Such systems have three
independent elastic constants and are generally not elasti-
cally isotropic. The most general expression for the Gibbs
free energy of cubic systems is
 

g�vf12�1�"2
xx�"2

yy�"2
zz���2�"xx"yy�"xx"zz�"yy"zz�

�2�3�"
2
xy�"

2
xz�"

2
yz�g; (9)

where �1, �2, and �3 are the elastic constants, and v is the
specific volume. The Poisson’s ratio is a function of both
the direction of the imposed strain and the chosen trans-
verse direction. As an example, if the strain is imposed
along the [100] direction, the Poisson’s ratio is

 �100
cubic �

�2

�1 � �2
: (10)

In order for the Hessian of the quadratic form given in
Eq. (9) to be positive definite, a necessary condition for
lattice stability, we must have that �1 > 0, �3 > 0, and
��1=2< �2 < �1. If we expand Eq. (2) to quadratic order
in the strain tensor components, we obtain

 

�1 � �p�
1

2v

XN
i�1

�
xi
jrij

�
4
�jrij2�00�jrij�

� jrij�0�jrij�	;

�2 �
p
2
�

3

2�T
�

1

4v

XN
i�1

�
xi
jrij

�
4
�jrij2�00�jrij�

� jrij�0�jrij�	;

�3 � �p�
1

2v

XN
i�1

�
xiyi
jrij2

�
2
�jrij2�00�jrij�

� jrij�0�jrij�	;

with
1

�T
�

1

18v

XN
i�1

�
xi
jrij2

�
2
�jrij2�00�jrij� � jrij�0�jrij�	;

and p � �
1

6v

XN
i�1

jrij�0�jrij�; (11)

where p is the pressure and �T is the compressibility. Note
that these expressions apply equally well to any Bravais
lattice with cubic symmetry. If we impose an additional
linear constraint on the elastic constants, we find that we
can impose elastic isotropy on the system, namely, if we
enforce the following:

 �1 � �2 � 2�3; (12)

then the system becomes elastically isotropic because the
free energy given in Eq. (9) can be written as a function
only of quadratic invariants of the strain tensor. Even with
this additional applied constraint, we find that the system
can exhibit NPR behavior under tension, with the Poisson’s
ratio in any direction given by Eq. (10). The Poisson’s ratio
must fall between�1 and�1=2 in this case. If we consider
a particular lattice we can, by employing Eqs. (10)–(12),
find inequalities, which involve the pair potential evaluated
at the neighbor distances, that describe the regime in which
the Poisson’s ratio is negative and the system is elastically
isotropic. For each set of coordination shells included in
the calculation, such inequalities can be found; none were
found to allow for NPR behavior at positive pressure.

Consider as an example the fcc lattice, which has 12
nearest neighbors (at distance a=

���
2
p

) and 6 next-nearest
neighbors at distance a, where a is the side length of the
cubic cell. If the potential extends only to the nearest
neighbor, NPR behavior is not possible. Both NPR behav-
ior and elastic isotropy can be exhibited at negative pres-
sure if the pair potential extends to the nearest and next-
nearest neighbors, if the following constraints are satisfied:

FIG. 2 (color online). Region of lattice constants (indicated by
the rectangular box) for which the Poisson’s ratio is negative in a
triangular lattice, using the LJ interaction potential �LJ. Pressure
is positive to the left of the dotted line and negative to the right;
thus, NPR behavior only occurs at negative pressure. To the right
of the rectangular box, the lattice becomes unstable.
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4�0�a� � 4a�00�a� � a�00
�
a���
2
p

�
�

���
2
p
�0
�
a���
2
p

�
;

���
2
p
�0
�
a���
2
p

�
< a�00

�
a���
2
p

�

< 4�0�a� � 5
���
2
p
�0
�
a���
2
p

�
;

and 4�0�a� � 9
���
2
p
�0
�
a���
2
p

�
< 5a�00

�
a���
2
p

�
: (13)

At zero pressure, the Poisson’s ratio goes to 1=4, as pre-
dicted by the Cauchy relations [12].

Our analysis suggests that NPR behavior does not occur
at positive pressures in crystals when the system contains
only pair interactions, and the material is elastically iso-
tropic. However, we present here a three-body potential
that yields NPR behavior in close-packed two- and three-
dimensional lattices by construction at zero temperature
and positive pressure. In order to produce this behavior, the
potential has a built-in energy cost associated with deform-
ing the equilateral triangles in the two-dimensional trian-
gular lattice and the three-dimensional close-packed
lattices. The three-body potential is given by

 �3�r; s; t� � �f�r�f�s�f�t�F�r; s; t�; (14)

where � is a positive constant, r, s, and t are the side
lengths of a triangle defined by a triplet of particles, f is
some function that goes to zero sufficiently quickly that
only nearest neighbors are within range of the potential,
and

 F�r;s;t��
�r�s� t�2

33=2�2�r2s2�r2t2�s2t2��r4�s4� t4	1=2
�1;

(15)

a function that is zero if the triplet of particles defines an
equilateral triangle, but is greater than zero otherwise.
Thus, if an outward strain is imposed on the system, then
regardless of the ambient pressure, the system will expand
in the transverse direction, if � is sufficiently large.

In conclusion, we have shown that in two and three
dimensions classical systems with only pair potentials
can have a negative Poisson’s ratio at zero temperature, a
surprising result. To the authors’ knowledge, this has not
previously been made explicit [13]. However, this auxetic
behavior is only present when the system is at negative
pressure, and thus not in thermal equilibrium. NPR mate-
rials may potentially be experimentally produced using
synthetic techniques that rely on kinetic effects; examples
include tempered glass [15], and even colloidal crystals
[16]. In two dimensions, it was proved that NPR behavior
could be found at negative pressure; the proof was shown
here for the triangular lattice, but a similar result also holds
true for the square lattice. In three dimensions, a set of
constraints on the pair interaction was found such that, if
satisfied, the fcc lattice is both elastically isotropic and has
NPR behavior at negative pressure. Although the fcc was
chosen as an example, the calculation may be generalized

given the expressions for the elastic constants of cubic
systems reported here. We also presented a three-body
interaction potential that by construction gives rise to a
solid with elastic isotropy and NPR behavior at zero tem-
perature and arbitrary pressure (negative and positive val-
ues). This suggests that the requirement of negative
pressure is limited to systems with only pair interactions.
A general proof of such a statement does not exist and will
be considered in future work. In other future work, we hope
to describe under what conditions NPR behavior can be
observed in colloidal crystals under tension, given the
experimentally realizable interaction potentials between
colloidal particles. Finding NPR behavior over a wide
range in temperature and pressure is a challenging optimi-
zation problem that we also intend to address.
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