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We present the first measurements of the attenuation of transverse sound in superfluid 3He-B. We use

fixed path length interferometry combined with the magnetoacoustic Faraday effect to vary the effective

path length by a factor of 2, resulting in absolute values of the attenuation. We find that attenuation is

significantly larger than expected from the theoretical dispersion relation, in contrast with the phase

velocity of transverse sound. We suggest that the anomalous attenuation can be explained by surface

Andreev bound states.
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Over 50 years ago Landau published his seminal works
on Fermi liquid theory [1,2]. In the second of these works,
on the collective dynamics of Fermi liquids, he predicted
that there would be collisionless sound modes outside the
hydrodynamic limit, called zero sound. The crossover from
hydrodynamic sound to longitudinal zero sound was dis-
covered in the normal state of 3He in 1966 by Abel,
Anderson, and Wheatley [3]. Along with longitudinal
zero sound, Landau predicted that for certain values of
the Fermi liquid interaction parameters [4] there should
be a collisionless collective mode called transverse zero
sound. The constraint on the Fermi liquid interaction pa-
rameters is essentially that the transverse sound velocity ct
be greater than the Fermi velocity vF, otherwise the trans-
verse wave can decay into incoherent quasiparticles in a
process called Landau damping [5]. This condition is likely
satisfied over the entire range of liquid 3He [6]. However,
attempts to observe transverse sound (TS) in the normal
state of 3He [7] have proven unsuccessful [8], due in part to
high attenuation.

Predictions for the fate of TS in the superfluid state of
3He were pessimistic since the number of unpaired quasi-
particles decreases as the energy gap opens up [9,10]. In
1993, Moores and Sauls (MS) [11] showed that these ideas
were incomplete and instead TS would be enhanced in the
B phase of superfluid 3He due to the off-resonant coupling
of transverse currents to an order parameter collective
mode, called the imaginary squashing mode (ISQ). They
showed that the dispersion relation for TS, in the long
wavelength limit, was given by
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where q is the complex wave vector, q ¼ kþ i�, k is the
real wave vector, � is the attenuation, and the phase
velocity is ct ¼ !=k. The ISQ-mode frequency closely
follows the temperature and pressure dependence of the

energy gap, �ðT; PÞ, �2�ðT; PÞ ¼ a2�ðT; PÞ�ðT; PÞ,
where a2� � ffiffiffiffiffiffiffiffiffiffiffi

12=5
p

[11–13] and the ISQ-mode width is
given by � [11,14]. It is customary to label this mode 2�,
according to its total angular momentum quantum number
and its parity under particle-hole conversion. The first term
on the right-hand side of Eq. (1) is the quasiparticle back-
ground, the contribution to the dispersion in the absence of
coupling to the ISQ mode, and the second term gives the
off-resonant coupling strength to the ISQ mode. This off-
resonant coupling produces a dramatic increase in the
phase velocity of TS near the mode [15], lifting it well
above the Fermi velocity and thereby reducing Landau
damping. But this is only allowed above the ISQ-mode
energy and below the pair-breaking energy, shown as the
blue (or gray) shaded region in Fig. 1.
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FIG. 1 (color online). The energy of pair-breaking (green or
gray curve) and the ISQ mode (blue or dark gray curve) as a
function of temperature normalized to Tc. TS propagates only in
the shaded blue region. The low temperature pressure sweep
technique follows a path represented by the red (or black) arrow.
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The predictions of MS [11] prompted a new exploration
for TS in 3He, which yielded more fruitful results than in
the normal state [12,13,15–19]. Additionally, MS predicted
a magnetoacoustic Faraday effect (AFE). Its observation
by Lee et al. [17] confirmed the existence of TS in liquid
3He, the only liquid where transverse sound is known to
propagate. In this Letter, we present measurements of the
absolute attenuation of transverse sound in superfluid
3He-B. These measurements show a larger attenuation
than expected from Eq. (1), which we suggest arises
from surface Andreev bound states.

To measure the attenuation, an acoustic cavity was con-
structed with one wall as a shear transducer (AC cut) and
the other as an optically polished quartz reflector. The
thickness of the acoustic cavity is D ¼ 31:6� 0:1 �m
and was filled with liquid 3He. This is small enough that
standing waves of TS are able to form in the cavity
[13,15,18]. Here we use the 13th to the 25th transducer
harmonics (76 to 147MHz). We note that the TS velocity is
a sensitive local indicator of the temperature in the acoustic
cavity, which was used to ensure that there was no heating
from the transducer or other sources. Furthermore, the
acoustic cavity walls are guaranteed parallel via a spring
loaded setup that maintains the cavity spacing at all times
and temperatures. Information on these experimental
techniques has been described in detail elsewhere
[12,13,15,19]. Throughout we use the weak-coupling-
plus (WCP) gap of Ref. [20], tabulated in Ref. [6] with
values of Tc given by Greywall [21]. And in�0 and�2� we
use the Tsuneto function calculated using theWCP gap and
all Fermi liquid parameters up to l � 2 [15,18,19].

The electrical impedance of the shear transducer is
sensitive to the standing TS wave at the surface of the
transducer and was monitored with a continuous wave
impedance bridge [19]. The output of the bridge is

VZ ¼ aþ b cos� sin

�
2D!

ct
þ�

�
; (2)

where � is the angle of the polarization of the TS wave at
the surface of the transducer relative to the intrinsic polar-
ization of the shear transducer, ct is the phase velocity of
TS, and� is a fixed phase that depends on the experimental
conditions. A smoothly varying background of acoustic
impedance [22] is represented by a and the attenuation,
� is proportional to � lnb. By varying the temperature or
pressure at fixed acoustic frequency we sweep @!=�ðT; PÞ
(see Fig. 1), changing the acoustic frequency relative to the
energy of the ISQ mode and therefore ct, producing oscil-
lations in VZ [13,15].

In previous reports [12,13,15] for which examples are
shown in the insets in Fig. 2, we noted that TS attenuation
is inversely related to the amplitude of the acoustic re-
sponse oscillations, but we could not make a quantitative
interpretation. Here, on the other hand, we obtain the
absolute value of the TS attenuation, taking advantage of

the acoustic Faraday effect. Using the AFE, we rotate the
linear polarization of the TS waves in the acoustic cavity
[13] by applying a magnetic field along the sound propa-
gation direction. When the polarization is rotated by �=2,
there is a minimum in the envelope of acoustic response
oscillations, modeled by the cos� in Eq. (2). The angle � is
proportional to the path length and consequently, at this
minimum, the standing waves to which our transducer is
sensitive have an effective path length of 4D. Under these
conditions smaller amplitude oscillations occur twice as
frequently in the same interval of a temperature or pressure
sweep. Comparing the amplitude of the waves with a path
length of 2D to the amplitude of the waves with a path of
4D we find the absolute attenuation, �, for one particular
frequency, temperature and pressure:

� ¼ � 1

2D
ln

�
b4D
b2D

�
: (3)

The absolute value of the attenuation at all temperatures
and pressures can then be determined, as shown in Fig. 2,
with no fit parameters. The increased attenuation at the low
energy end of Fig. 2 is from the ISQ mode and the increase
in the attenuation near 2� originates from the 2� mode,
recently reported [15]. The ISQ-mode frequency has a

weak pressure dependent deviation from
ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
�ðT; PÞ

[12,13] which is reflected in the offset of the upturns in
attenuation at low energy for the two frequencies in Fig. 2.
With our technique we are able to observe propagating TS
with an attenuation as high as 1000 cm�1. As yet, we have
not found any indication of propagating TS in the normal
state of 3He and its observation will require overcoming
this higher than expected attenuation [23]. We note in
passing that our measurements were performed in the
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FIG. 2 (color online). Attenuation of transverse sound as a
function of energy normalized to the energy gap at constant
temperature, �550 �K from a pressure sweep. Blue (or dark
gray) circles and gold (or gray) squares are for 88 and
111.5 MHz, respectively. In the insets (88 MHz) we show
examples of the acoustic interference oscillations in VZ over
small energy ranges for comparison, both on the same energy
and amplitude scales.

PRL 101, 085301 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

22 AUGUST 2008

085301-2



quantum limit of attenuation described by Landau [2], with
@!=2�kBT ¼ 1:2 (1.3) for the 88 (111.5) MHz data.

The contribution to the attenuation from the ISQ mode
can be calculated from Eq. (1) with only a single fit
parameter: the width of the ISQ mode. We use the form

� ¼ �ce
��=kBT , where �c ¼ �0T

2
c , and �0 is pressure in-

dependent. The ISQ attenuation is shown separately, for
the 88 MHz data, by the gray curve in Fig. 3. In order to
represent the observed nonmonotonic dependence of at-
tenuation on @!=� it is clear that there must be an addi-
tional contribution. This unexpected behavior apparently
increases smoothly with energy and then saturates,
@!=� � 1:7. To obtain a quantitative assessment of this
anomalous attenuation we must choose a value for �0

which, if taken either too large or too small, will introduce
an unphysical, sharp kink at @!=�� 1:6. Our final result
using �0 ¼ 9:5� 2 MHz=mK2 is given by the green
squares in Fig. 3. Since the ISQ-mode attenuation domi-
nates only near the mode the subtracted result is largely
unaffected by our choice of �0, which we find to be a factor
of 3 larger than previously suggested [14], based on a less
accurate measurement of the ISQ-mode width [24].
Additionally, we find that the anomalous attenuation ap-
proaches the temperature independent value at low tem-
peratures given in Fig. 3, as demonstrated by temperature
sweeps in Fig. 4.

In contrast to the attenuation, we have found that the
phase velocity of TS is accurately accounted for by the
dispersion relation for the order parameter collective mode,
Eq. (1) [15,18], as shown in the upper panel of Fig. 3. We
infer that the anomalous attenuation cannot be associated
with order parameter collective modes. Furthermore, the
data at 88 and 111.5 MHz are nearly identical, shown in
Fig. 5, indicating that the attenuation is not explicitly
dependent on frequency at the same values of @!=�, nor
does it depend on temperature in the low temperature
limit, Fig. 4. On this basis we can rule out quasiparticle-
quasiparticle scattering as the source, since this mechanism
should decrease to zero exponentially at low temperatures.
We have applied magnetic fields up to 300 G along the TS
propagation direction and have found that the attenuation
does not depend on magnetic field, outside of the regions of
field induced birefringence from order parameter collec-
tive modes (AFE). We suggest that the anomalous attenu-
ation might be attributed to the interaction of TS waves
with surface Andreev bound states (SABS).
SABS play an important role in the understanding of

unconventional superconductors and superfluids. For ex-
ample, SABS have been studied in tunneling experiments
in Sr2RuO4 [25] and the high Tc superconductors [26,27].
In superfluid 3He they have been found to dominate the
transverse acoustic impedance [28] and have been ob-
served in the surface specific heat [29]. Moreover, in the
absence of excited quasiparticles, there is no coupling
between a transverse transducer and 3He, for example,
when the scattering at the transducer surface is specular
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FIG. 3 (color online). Phase velocity of transverse sound
(upper panel) and attenuation (lower panel) at 88 MHz at
�550 �K in zero magnetic field. In the upper panel, the red
(or black) circles are the data, the dashed gray curve is calculated
from Eq. (1), and the black curve is the dispersion that accounts
for the 2�-mode [15]. In the lower panel, the attenuation data
(blue or dark gray circles) have been deconvolved by subtracting
the contribution from coupling to the ISQ mode (gray curve)
calculated from Eq. (1) leaving an anomalous attenuation given
by the green (or gray) squares.
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FIG. 4 (color online). The temperature dependence of the TS
attenuation. The pressures are chosen for the acoustic frequen-
cies such that @!=� is within the shaded region of Fig. 1 and
never crosses the ISQ mode. The data have been minimally
smoothed and are shown as a line for clarity. Quasiparticle-
quasiparticle scattering, seen as an increasing attenuation at high
T=Tc, is expected to decrease to zero at zero temperature.
Instead, there is a crossover from the quasiparticle dominated
region at high T=Tc to a temperature independent anomalous
region at low T=Tc. The low temperature endpoints of the data
correspond to @!=� � 1:64.
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[30]. However, quasiparticles that scatter diffusely transfer
momentum parallel to the transducer surface and couple to
transverse currents in the 3He [30]. These local excitations
are the bound states (SABS). In 3He-B they have a char-
acteristic energy given by�? [22,31], the upper limit of the
density of states band which we show integrated over all
trajectories in the inset of Fig. 5 (red or black trace). These
midgap states are responsible for structure observed in the
temperature dependence of the acoustic impedance [22,28]
between the transducer and helium and should also affect
the amplitude of a transverse sound wave reflected from a
surface. Excitation of SABS will attenuate the wave and
we expect this to follow the frequency dependence of the
imaginary part of the acoustic impedance [22], increasing
with frequency up to @! ¼ �þ�? and then leveling off.
This scenario is qualitatively consistent with the attenu-
ation shown in Fig. 5 where we observe a smooth but
distinct crossover near @! � 1:7� to a regime of anoma-
lous attenuation at higher energy. With this interpretation
our results are in good agreement with the theoretical value
for @! ¼ �þ �? ¼ 1:75�, at T=Tc � 0:4 for diffusive
boundary conditions.

In summary, we have measured the attenuation of trans-
verse sound in 3He taking advantage of the acoustic
Faraday effect to determine absolute values. We found an
anomalous contribution to the attenuation which cannot be
accounted for in terms of collective modes or quasiparticle
scattering in the bulk. We suggest that scattering of trans-
verse sound with surface Andreev bound states is the most

likely mechanism. A crossover in the frequency depen-
dence of the attenuation corresponds to the theoretical
value of the upper limit of the midgap in the surface density
of states of �?=� ¼ 0:7.
We acknowledge support from the National Science
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FIG. 5 (color online). The anomalous attenuation, for 88 MHz
(blue or dark gray circles) and 111.5 MHz (gold or gray squares).
A smooth crossover in the attenuation appears at @! ¼ �þ
�? � 1:7�. The inset shows the local density of states, as a
function energy normalized to �, at the transducer surface (red
or black) and in the bulk 3He (light blue or light gray) at T=Tc ¼
0:5 for diffusive boundary conditions.
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