
Admissible Equilibria of Non-neutral Plasmas in a Malmberg-Penning Trap

Igor Kotelnikov

Budker Institute of Nuclear Physics, Lavrentyev Avenue 11, Novosibirsk, 630090, Russia

Massimiliano Romé
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A ‘‘parallel current constraint’’ is derived, that in combination with the Poisson equation allows one to

select admissible equilibria of non-neutral plasmas in a Malmberg-Penning trap in the presence of a

nonuniform and nonaxisymmetric magnetic field. Asymmetry-induced currents (analogous to the Pfirsch-

Schlüter currents in Tokamaks) appearing in a non-neutral plasma even in the absence of magnetic drifts

are explicitly computed in the case of a uniformly tilted magnetic field.
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The radial confinement of non-neutral plasmas in
Malmberg-Penning (MP) traps is provided by a strong
axial magnetic field. This field is assumed to be uniform
in most theories that deal with plasma confinement.
However, small perturbations of the magnetic field may
play a crucial role in the transport of non-neutral plasmas
in this kind of confinement devices [1]; see also the review
paper [2] and references therein for further discussion of
the problem of non-neutral plasma transport. On the other
hand, it is well known that an accurate treatment of the
plasma transport requires at first an analysis of the plasma
equilibrium, as it is demonstrated by established theories
for quasineutral plasma confined, e.g., in tandem mirrors
[3].

It may be wondered whether an equilibrium of a non-
neutral plasma exists in an asymmetric magnetic field,
since an asymmetry leads in general to plasma expansion.
A positive answer to this question implies that the equilib-
rium is referred to a time interval shorter than the expan-
sion time �m. If the asymmetry is small, the latter is
expected to be at least greater then the axial bounce time
of the particles inside the trap �b and the plasma azimuthal
rotation time 2�=!E, i.e., �m � ð�b; 2�=!EÞ. In general,
�m / ��2, where the parameter � characterizes the small-
ness on the magnetic field inhomogeneity. At this stage it
can be assumed that �� �B=B, where �B represents the
difference of the actual magnetic field from an ideal uni-
form magnetic field B� ¼ B�ez directed along the symme-
try axis of the cylindrical confinement device. For the small
� values achieved in existing devices the expansion time
can therefore be quite large, and for a shorter time interval,
t� �m, it is possible to consider a slowly evolving plasma
column as being in a static equilibrium.

Systematic studies of nonaxisymmetric equilibria in a
MP trap have been started in Refs. [4,5]. In Ref. [4] the
equilibrium of a non-neutral plasma column in a weakly
tilted magnetic field was simulated numerically. In Ref. [5]
an electrostatic asymmetry was introduced by azimuthally

sectored electrodes, and the analytical treatment was lim-
ited to the case of a cold plasma with a stepwise radial
density profile. Later on, three-dimensional numerical
particle-in-cell simulations of the non-neutral plasma equi-
librium with quadrupole or mirror magnetic perturbations
have been reported in Ref. [6]. However, similar numerical
simulations are hardly able to uncover fine-structure effects
that limit plasma lifetime in existing and future facilities
designed to achieve improved confinement of non-neutral
plasmas.
In Ref. [7] the equilibrium of non-neutral plasmas on a

set of nested toroidal magnetic surfaces has been recently
considered. This work together with the theory of quasi-
neutral plasma equilibria in tandem mirrors [3] bestows a
guideline of how to establish a constraint on the shape of
admissible plasma equilibria. Together with Poisson’s
equation, rewritten in flux coordinates, this constraint con-
stitutes a self-consistent method for determining asymmet-
ric equilibria of non-neutral plasmas in a MP trap.
The approach is based on the use of curvilinear flux

coordinates for the magnetic field. As it was argued in
Ref. [8], performing the calculations in flux coordinates
makes the interpretation of the plasma equilibrium much
easier and provides the best approach to the problem of the
error field mediated transport.
The electric current produced by the flowing electrons

confined in a MP trap produces a negligible change of the
magnetic field, if the electron density n is far below the
Brillouin limit [9] nB � B2=8�mc2 (with m the particle
mass and c the speed of light) except for the case of a fast
rotating non-neutral plasma equilibrium [10]. The mag-
netic field can then be described by a scalar magnetic
potential � such that

B ¼ r�: (1)

Alternatively, any divergence-free field can be written as

B ¼ r � r#; (2)
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where  and # are flux coordinates [11], which are con-
stant along the magnetic field lines. The relations  ¼
 ðx; y; zÞ, # ¼ #ðx; y; zÞ, � ¼ �ðx; y; zÞ define a system
of curvilinear coordinates.

The momentum balance equation for a pure electron
plasma is

mn

�
@v

@t
þ v � rv

�
¼ en

�
1

c
v� B� r�

�
� rp;

where e is the particle charge, v the fluid velocity, � the
electrostatic potential, and p the scalar pressure. In the
equilibrium state, the time derivative vanishes. If the elec-
tron density is far below the Brillouin limit, n� nB, and
the plasma column is in a slow rotation state [10], then the
v � rv term is negligible in comparison with the other
terms and the force balance equation reduces to

rp ¼ en

�
1

c
v�B� r�

�
: (3)

Dotting Eq. (3) with B, one finds that B � rp ¼ �enB �
r�. The electron temperature T tends to be constant along
the magnetic field, B � rT ¼ 0. When this situation is
reached, the electron density must have the form

n ¼ Nð ;#Þ exp
�
� e�

Tð ;#Þ
�

(4)

and must also be consistent with the Poisson equation.
Therefore, the fundamental equilibrium equation for a
pure electron plasma is

r 2�ð ;#; �Þ ¼ �4�eNð ;#Þ exp
�
� e�

Tð ;#Þ
�
: (5)

This equation contains two functions of  and #, Nð ;#Þ
and Tð ;#Þ which are subject to a constraint derived
below. The dependence of N and T on # makes the plasma
equilibria in MP traps very different from those obtained in
toroidal devices [7], where the functions Nð Þ and Tð Þ
are entirely determined by the experimental conditions and
by the plasma transport processes.

The equilibrium equation (3) implies

v ¼ vk
B
B� c

�rp
en

þ r�
�
� B

B2
; (6)

leaving undefined the velocity vk parallel to the magnetic

field. According to Eq. (4), the pressure

pð ;#;�Þ ¼ Tð ;#ÞNð ;#Þ exp½�e�=Tð ;#Þ	; (7)

is a function of  , #, and �. Thus,

rp ¼ @p

@ 
r þ @p

@#
r# � enr�: (8)

Combining Eqs. (6) and (8), the r� terms cancel, and

v ¼ vk
B

B
� c

@p

@ 

r �B

enB2
� c

@p

@#

r# �B

enB2
: (9)

This relation reveals that @p=@ and @p=@# cannot be
neglected even when p vanishes in the zero temperature
limit, as explained in Ref. [7].
The parallel component vk of the plasma flow, Eq. (9),

must be consistent with the steady-state constraint

r � ðenvÞ ¼ 0: (10)

This constraint leaves a net parallel electric current of the
non-neutral plasma undetermined in a toroidal confine-
ment configuration [7], but it leads to a closure condition
for the MP trap geometry.
Combining Eq. (9) with Eq. (10) yields

r �
�
envk
cB

B

�
¼ r

�
1

B2

@p

@ 

�
� r � r�

þ r
�
1

B2

@p

@#

�
� r# � r�: (11)

The left-hand side is transformed according to

r �
�
envk
cB

B

�
¼ B2 @

@�

envk
cB

: (12)

Computing the gradients in the right-hand side, one has to
take into account that triple products with two gradients of
the same function are equal to zero, for example, r �
r � r� ¼ 0. Reminding that B is considered here as a
function of  , #, and �, and p is a function of  , #, and�,
one obtains
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Since r � r# � r� ¼ B2 and r# � r � r� ¼ �B2, the third and fourth terms in the last equation cancel each other.
In the fifth term one can change the order of the partial derivatives over � and  and then make use of the equality
@p=@� ¼ �ep=T. The triple product r� � r � r� is equal to ð@�=@#Þr# � r � r� ¼ �B2ð@�=@#Þ. The sixth
term is transformed in a similar way. Dividing both sides of the last equation by B2 leads to
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This equation allows one to calculate the plasma current
along the magnetic field lines. Since the current vanishes at
the ends of the plasma column, the integral of the right-
hand side over the entire range of � must be equal to zero.
This yields the ‘‘solvability condition’’

0 ¼
Z 1
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� @p
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@
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p
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�
d�; (14)

where the integration is formally extended over an infinite
interval (actually it covers the interval of a magnetic field
line where the plasma pressure p is nonzero).

The constraint (14) interrelates two functions of  and
#, namely N and T, and, in general, it allows determining
Nð ;#Þ if Tð ;#Þ is given or vice versa. One can argue,
however, that Tð ;#Þ is not completely independent of
Nð ;#Þ. Indeed, a differential plasma rotation would result
in a fast sharpening of the temperature gradient across the
plasma streamlines so that even a weak transverse thermal
conductivity effectively flattens the temperature along the
streamlines. Therefore one can assume that v � rT ¼ 0 in
addition to the conditionB � rT ¼ 0 used in the derivation
of Eq. (4). Dotting Eq. (9) with rT one finally concludes
that T depends on  and # through the dependence ofN on
these coordinates, i.e., Tð ;#Þ ¼ TðNð ;#ÞÞ. For the sake
of simplicity it is assumed below that T ¼ const. This
assumption is relevant to the state of global thermal equi-
librium [12,13], which is also characterized by a rigid
plasma rotation.

The parallel current constraint (14), together with the
Poisson equation (5), allows also computing the plasma
currents induced by a magnetic field perturbation in a non-
neutral plasma confined in a MP trap. These currents can
be thought of as an analog of the Pfirsch–Schlüter currents
in Tokamaks [14] or the Stupakov currents in tandem
mirrors [3,15]. However, they appear even in the case of
a uniform magnetic tilt which does not give rise to any
magnetic drift, whereas both Pfirsch’s–Schlüter’s and
Stupakov’s currents originate from magnetic drifts.

Considering the case of a weak magnetic perturbation,
�� 1, the unknown functions � and N can be sought in
the form �ð ;#; �Þ ¼ �0ð ; �Þ þ ��1ð ;#; �Þ and
Nð ;#Þ ¼ N0ð Þ þ �N1ð ;#Þ. The linearized versions
of Eqs. (14) and (5) can be readily solved in the region
far from the plasma column ends, where the unperturbed
electric potential �0 ¼ �0ð Þ does not depend on �. An
example of solution is shown in Fig. 1.

Omitting the details of the calculations, in the case of a
uniform magnetic field B� tilted by a small angle � with

respect to the axis of the trap, the perturbed potential can be
written as

�1ð ;#; �Þ ¼ �ð1Þ
1 ð Þð��=B�Þ cos#; (15)

while N1 ¼ 0 if � ¼ 0 in the midplane of the plasma
column (this can be accomplished with a proper choice

0. 0 0. 2 0. 6 0. 8 1.
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). Unperturbed density n0 (solid line),
unperturbed electric potential �0 (dashed line), and radial part

�ð1Þ
1 (dot-dashed line) of the perturbed potential used for calcu-

lating the Pfirsch-Schlüter currents vs the flux radius � ¼
ð2 =B�Þ1=2 normalized over the radius R of the MP trap. The
density is normalized by its maximal value n�, and the potentials
by ðT=eÞða=	DÞ2, with 	D � ½T=ð4�e2n�Þ	1=2 the Debye length.
The density profiles corresponds to a global thermal equilibrium
with a column radius a=R ¼ 0:25 (computed at 1=2 of the
maximal density), and 	D=R ¼ 0:05.

FIG. 2 (color online). Level curves of �1 (streamlines of the
asymmetry-induced current density) on a flux surface with
�=R ¼ 0:25 for a uniform magnetic field with a tilt angle � ¼
1
. Solid and dashed lines correspond to a clockwise and a
counterclockwise flowing current, respectively. The total length
of the plasma column is L ¼ 8R. Other parameters are indicated
in Fig. 1.
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of the origin of the system of coordinates). The contra-
variant components of the electric current j ¼ env deter-
mined from Eqs. (9), (11), and (12) assume the following
elegant form

ji ¼
�
�c @p

@#
; c
@p

@ 
; envkB

�
; (16)

where

envkB ¼ c
@N0

@ 

Z �

�1
@e�1

@#
exp

�
� e�0

T

�
d�: (17)

Introducing the flux function

�1 � cT

B2�

@N0

@ 

Z �

�1
e�1

T
exp

�
� e�0

T

�
d�; (18)

the asymmetry-induced part of the electric current can be
cast in the vector form

j 1 ¼ r � r�1: (19)

This equation shows that the radial current density van-
ishes, j11 ¼ 0, and that the streamlines of j1 within a given
flux surface  ¼ const coincide with the contours �1 ¼
const. The level curves of �1 for a given flux radius � ¼
ð2 =B�Þ1=2 in the case of a plasma density N0ð Þ corre-
sponding to a global thermal equilibrium [12,13] are drawn
in Fig. 2. These level curves show a similar topology at
each radius for the parallel current density jk. It can be

shown that this feature is no longer valid in the general case
of a variable magnetic tilt. This contour plot shows that

asymmetry-induced currents are almost parallel to the
magnetic field lines on the major part of the plasma column
except in the proximity of the column ends where they are
shorted out azimuthally. In addition, the radial profiles of

jk are peaked near the column edge, � � ð2 =B�Þ1=2 � a,
as shown in Fig. 3, and the maximum value of jk is roughly
evaluated as ðcTn�=32	DB�Þða=	DÞ2ð�L2=R2Þ, where n�
is the peak density.
In this Letter a parallel current constraint has been

derived that selects a class of admissible plasma equilibria
in the trap in the presence of a nonuniform and a non-
axisymmetric magnetic field. In combination with
Poisson’s equation this constraint provides a full set of
equations for determining self-consistent equilibria of
non-neutral plasmas in MP traps.
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FIG. 3 (color online). Radial profiles of the parallel current
density jk for a uniform magnetic tilt along the ray # ¼ �=2,
� ¼ 0 (midplane of the trap) for a=R ¼ 0:25 (solid lines),
a=R ¼ 0:5 (dashed lines) and various values of 	D=R (indicated
on the plot); jk is normalized by ð�cn�T=B�	DÞðL=RÞ2ða=	DÞ2.
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