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The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be

retained by taking into account the ion gyroviscosity or the generalized Ohm’s law in an extended

MHD model. However, recent simulations and theoretical calculations indicate that complete FLR

stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect

alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-� or

nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.
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It is well known that the kinetic effects due to the finite
Larmor radius (FLR) are able to stabilize the interchange
mode in a weakly unstable plasma under gravity [1–4]. The
dominant FLR stabilization effects on the gravitational
instability (also known as g mode, or the magnetic
Rayleigh-Taylor instability) can be retained by taking
into account the ion gyroviscosity or the generalized
Ohm’s law in an extended MHD model [5,6]. Recently
Ferraro and Jardin [7] extended earlier work of Roberts and
Taylor [5] by including effects of plasma compression.
They found the FLR effects due to ion gyroviscosity alone
can completely stabilize the g mode of the isothermal
equilibrium they considered in all plasma � regimes.

The extended MHD model has been widely applied in
simulation studies of edge localized modes (ELMs) in
tokamaks. The FLR stabilization of interchangelike,
high-n ballooning modes in extended MHD provides a
natural cutoff of the high-n spectrum without resorting to
numerical or artificial dissipation for ELM simulations.
Direct benchmarking between theory and extended MHD
codes for the linear ballooning instabilities in ELMs has
not been conclusive due to the complexity of the edge
tokamak plasma equilibrium involved [8]. On the other
hand, the FLR stabilization of g mode may provide a
simpler case for benchmarking between theory and codes,
while serving as a paradigm for FLR stabilization in more
complicated situations, as suggested by Schnack et al. [9].

In a recent code verification effort, Schnack and Kruger
[10] computed the linear growth of a g mode using the
NIMROD code with the implementation of the extended

MHD model [11]. For the particular equilibrium consid-
ered, however, they did not find the complete FLR stabili-
zation predicted by the earlier theories that were based on
extended MHD [5–7]. In order to resolve the discrepancy,
we revisited the analytical dispersion relation of the pure
interchange g mode, in the model of compressible ex-
tended MHD, for a general shearless slab configuration.
In this Letter, we provide a calculation to clarify the prior
simulation results.

Consider the following extended MHD model in a
Cartesian coordinate system as in [5]:

d�

dt
¼ ��r � u (1)

du

dt
¼ �rpþ J� Bþ �g�r � �i (2)

dp

dt
¼ ��pr � u (3)
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where d=dt ¼ @=@tþ u � r, � is the adiabatic index, g the
gravity, n the number density, pi (pe) the ion (electron)
pressure, p the total pressure (p ¼ pi þ pe ¼ �pþ pe,
with � ¼ pi=p), � the ion gyrofrequency (� ¼ eB=mi,
with mi being ion mass), and the rest of the symbols are
conventional. We also use two multipliers � and � to track
the two-fluid and the ion gyroviscosity effects,
respectively.
A two-fluid static equilibrium is specified as follows:

u ¼ 0 (9)

B ¼ Bez (10)

d

dx

�
pþ B2

2

�
¼ �g � ex ¼ �g (11)

neE ¼ rpi � �g: (12)

The equilibrium is assumed to vary only in x, and eiði ¼
x; y; zÞ is the basis vector in each Cartesian direction. The
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pure interchange perturbation for the g mode has the form

u ¼ ½uxðxÞex þ uyðxÞey�eikyy�i!t (13)

and it satisfies the local approximation ordering: kyLA � 	,

kydi � �� �, uy � 	ux, 	 � 1, where LA ¼
jd lnA=dxj�1 is the spatial scale of field A in x direction,

and di ¼
ffiffiffiffiffiffiffiffiffiffiffi
pi=�

p
=� is the ion Larmor radius.

When both the ion gyroviscosity tensor and the gener-
alized Ohm’s law are kept in the extended MHD model, to
the lowest order in 	 we obtain the local dispersion relation
for the pure interchange g mode

!ð!2 þ!�FLR!þ �2
FLRÞ þDFLR ¼ 0; (14)

where
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Here, � ¼ �0p=B
2, u2A ¼ B2=�0�, and A0 ¼ dA=dx. In

obtaining Eq. (14), no assumption about the ordering of !
is explicitly made. This dispersion relation is applicable in
finite-� and general nonisentropic thermal plasma re-
gimes. It recovers the dispersion relation in [5] for an
isentropic plasma where ðp=�Þ0 ¼ 0 in the limit of zero
�. Whereas the extended MHD model is only strictly valid
in the small Larmor radius regime where ð�; �Þ � 1, the
above dispersion relation is formally applicable in regimes
where ð�; �Þ � 1 as well. Such a feature allows the bench-
marking of extended MHD simulations in a wide range of
parameter regimes. A similar dispersion relation was ob-
tained by Ferraro and Jardin [7] for an isothermal plasma in
the low frequency regime. The dispersion relation above
applies to general plasma equilibrium, including the iso-
thermal case. However, as shown in the following, the FLR
stabilization properties are sensitive to the equilibrium
considered.

Formally setting � ¼ 0, � ¼ 1, the local dispersion
relation for the pure interchange g mode reduces to the
following form with FLR effects due only to ion gyrovis-
cous force in momentum equation:

!2 þ!�GYR!þ �2
GYR ¼ 0; (20)

where
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Complete FLR stabilization (no unstable roots) requires
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(22)

where kc is the cutoff wave number. When � ! 0, there is
always a kc for complete FLR stabilization by ion gyrovis-
cosity. This is the results given in [5]. For finite�, there is a
possibility that a real value of kc may not exist because of
the negative sign in front of the second term in the de-
nominator of the expression for kc in (22). For the isother-
mal plasma equilibrium studied by Ferraro and Jardin [7],
p0 ¼ p�0=�, and the cutoff wave number kFJc is given by

�
kFJc ��

�

�
2 ¼ 4�2

MHD

½u2AL�
ð1þ �Þ þ 2þ��

1þ�� g�2 �
u2
A

1þ���
2
MHD

; (23)

where L� ¼ �ðd ln�=dxÞ�1 and is assumed to be indepen-

dent of �. It can be shown that for g=L� > 0, the right-

hand side of (23) is positive definite. A real value of kFJc
exists that completely stabilizes the g mode by FLR for
isothermal equilibria in all regimes of �. This is consistent
with the findings in [7].
For the equilibrium where the magnetic field is uniform,

as was studied by Schnack and Kruger [10], p0 ¼ �g, so
that the cutoff wave number kSKc is determined by

�
kSKc �

�

�
2 ¼ 4ð1þ ��Þ�2

MHD

u2A
g
L�
ð�� � �Þð�þ þ �Þ ; (24)

where

�	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� �Þ2g4 þ 4u2

A
g3

L�

r
	 ð2� �Þg2

2u2A
g
L�

: (25)

When g=L� > 0 the denominator in the right-hand side of

(24) is a monotonically decreasing function of � (for �>
0), and becomes zero and negative when � � �crit ¼ ��.
As it turns out, for the particular equilibrium case studied
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by Schnack and Kruger [10] in NIMROD simulations,
�crit � 0:45, whereas in the center of the simulation do-
main �� 0:5.

For the same type of equilibria with a uniform mag-
netic field, we further performed a detailed comparison
between the NIMROD simulations and the dispersion
relation in (20). The equilibrium is set up as follows:
�ðxÞ ¼ �0 expð�x=L�Þ, BðxÞ ¼ B0ez, pðxÞ¼�0B

2
0=�0þ

�0gL�½1�expð�x=L�Þ�, where �0, B0, and �0 represent

the values of the corresponding quantities at the center of
the simulation domain (x ¼ 0). Following the earlier simu-
lation study in [10], the particular choice of parameters is
�0 ¼ 6:689� 10�7, B0 ¼ 6, L� ¼ 10, g ¼ 1012, and � ¼
1=2. All physical quantities and parameters in this Letter
are in SI units. A set of equilibria are further specified by a
range of �0 values from 0.1 to 0.5. For each �0, the
equilibrium is perturbed with a pure interchange motion
as in (13) at t ¼ 0. The MHD equations are allowed to
evolve linearly until an exponentially growing mode is
obtained and its converged growth rate can be measured.
We compare the measured growth rate with the growth rate
evaluated from the analytical dispersion in (20) and (21) at
x ¼ 0 where � ¼ �0.

The results are shown in Fig. 1. The � ¼ 0 case corre-
sponds to the dispersion relation given by Roberts and
Taylor [5]. There is no simulation data for this case, since
simulations of g mode with strictly zero pressure is nu-
merically onerous. The � ¼ 0:5 case is for the equilibrium
originally studied by Schnack and Kruger [10]. In this case,
the ion gyroradius di ’ 0:01 at the center of the simulation
domain. This case is qualitatively different from all other
cases in the figure, in that �>�crit � 0:45, and therefore
there is no real value of the cutoff ky. Theory and simula-

tion have a reasonable agreement except very near mar-
ginal stability. In that situation, the growth rate and the
cutoff wave number obtained from simulations tend to be
larger than the analytic values.

In the cases shown in Fig. 1, the cutoff wavelengths at
FLR stabilization reach the order of ion gyroradius di, or
kcdi * 1. However, the absence of FLR stabilization due
to finite � is also effective in the regime kydi < 1, where

the extended MHD model is physically relevant. One such
example is shown in Fig. 2, where L� ¼ 100, g ¼ 109,

while other equilibrium specifications (except �) remain
the same as in the earlier case. The reduced growth rate
allows the FLR stabilization to first occur within the re-
gime of kydi < 1. Here in Fig. 2, the squares of the linear

growth rates (�2) are plotted as a function of kydi, for

equilibria with a different set of increasing � values. The
lines are obtained from analytical dispersion relation in
(20) and (21), and the symbols are measured from simula-
tions. The FLR stabilization first starts at very low � ¼
3� 10�5 and a small kydi � 0:33. As � becomes larger,

the cutoff value of kcdi quickly grows beyond the kydi < 1

regime and approaches infinity when � is raised close to
about 5%. The � ¼ 5% case is where the complete FLR

stabilization is absent as the cutoff ky becomes imaginary.

But as shown here, even within the physically relevant
regime of kydi < 1, a very small increase of � is enough

for the loss of FLR stabilization, as indicated by the � ¼
0:001 case where the cutoff ky falls outside the regime of

kydi < 1. Thus this effect is both formally and physically

relevant.
In the case when only the two-fluid effects are included

by the generalized Ohm’s law whereas the gyroviscosity is
ignored, the local dispersion relation for the pure inter-
change g mode can be obtained as follows by formally
setting � ¼ 1, � ¼ 0 in (14):

!ð!2 þ!�2FL!þ �2
MHDÞ þD2FL ¼ 0; (26)
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FIG. 1. The squares of the linear growth rates �2ð1011 s�2Þ
[where � ¼ Imð!Þ] as a function of ky ðm�1Þ for equilibria with
an increasing set of � values. Here L� ¼ 10 m, g ¼ 1012 m=s2.

The lines are calculated from analytical dispersion in (20) and
(21) (denoted as ‘‘the’’), and the symbols are measured from
simulations (denoted as ‘‘sim’’).
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FIG. 2. The squares of the linear growth rates �2ð107 s�2Þ
[where � ¼ Imð!Þ] as a function of kydi for equilibria with an

increasing set of � values. Here L� ¼ 100 m, g ¼ 109 m=s2.

The rest are the same as in Fig. 1.
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where

!�2FL ¼ � ky
�

1

1þ ��

�
g� �

p

�

�
ln

p

��

�0�
(27)
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�
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�
p

�

�
ln

p

��

�0
: (28)

(Here the subscript ‘‘2FL’’ stands for ‘‘two-fluid.’’) The
above dispersion relation reduces to that in [5] in an
isentropic plasma where the entropy density lnðp=��Þ is
a constant. For nonisentropic plasma where D2FL � 0,
there are 3 eigenmodes. When ðg=L�Þ=ð!�Þ or D2FL=!

is not very small, there are situations when there are 2
complex conjugate roots so that there is always one grow-
ing mode for any ky. When that happens, complete FLR

stabilization could fail.
In the low frequency or weakly unstable regime, where

ðg=L�Þ=ð!�Þ � 1 so thatD2FL=!� 0, the complete FLR

stabilization criterion is simply !2
�2FL > 4�2

MHD, or

k2y

�2
� k2c

�2
¼ 4ð1þ ��Þ2�2

MHD

½g� � p
� ðln p

��Þ0�2 : (29)

Again it is also possible to find an equilibrium such that the
denominator in the expression for the cutoff wave number
in (29) becomes identical or close to zero, so that the
complete FLR stabilization effects could be entirely lost.

In summary, our simulations and theoretical calculations
indicate that complete FLR stabilization of the interchange
mode may not be attainable by ion gyroviscosity or the
two-fluid effect alone in the framework of extended MHD.
For a class of plasma equilibria in certain finite-� or non-
isentropic regimes, the critical wave number for complete
FLR stabilization tends toward infinity. The FLR stabiliza-
tion of g mode with high wave number may not appear to
be ubiquitous as is generally thought.

The result that FLR stabilization is incomplete or absent
in certain regimes of � and equilibria is independent of the
model used (either kinetic or two-fluid) when the condi-
tions kydi � 1 and � 
 1 are met. In this regime, the

corresponding kinetic theory should give the same results
as the two-fluid model presented here since the two-fluid
model is a valid moment representation of the kinetic
model. In regimes where the two-fluid model is not physi-
cally valid, such as kydi � 1, the question remains open as

to how much the results will change, qualitatively or
quantitatively, in a kinetic model with full FLR effects.
This calculation is beyond the scope of the present work.

In this work, we focus our studies of incomplete FLR
stabilization effects within the framework of the extended

MHD emphasizing the physically valid regime of kydi �
1. Such a study, though not fully kinetic, serves at least two
purposes. First, it provides real physical insights in the
physically valid regimes of the extended MHD model in
general. Second, it provides a powerful means of verifica-
tion for direct MHD simulation codes, such as NIMROD, in
all mathematically valid FLR regimes of the extended
MHD model. Our findings might also have potential im-
plications for the extended MHD modeling and simula-
tions of other interchange types of instabilities in
magnetized plasmas [12–18].
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