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In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are domi-

nant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) sto-

chastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by

means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in

asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly

affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases

the dissipation by factors of 2–5. We conclude that the nonlinear plasma dynamics should be taken into

account in order to describe quantitatively correct electron heating in asymmetric capacitive radio fre-

quency discharges.
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In low-pressure capacitive radio frequency discharges,
two mechanisms of electron heating play a major role:
(i) Ohmic heating due to collisions of electrons with neu-
trals and (ii) stochastic heating—often referred to as Fermi
heating—due to momentum transfer from the oscillating
sheath. Various models have been proposed in order to
study electron heating phenomena in capacitive discharges
[1–11]. None of these models account for resonance effects
for a number of reasons: Some models do not prescribe the
voltage at the electrode but the total current through the
plasma. Other models study a highly idealized, symmetric
situation by means of a one-dimensional discharge. Other
models neglect electron inertia from the outset. Other
models study discharges at relatively high pressures. The
various models do not account for nonsinusoidal radio
frequency currents due to self-excitation of the plasma
series resonance which arises in asymmetric rf discharges
[12–14]. An experimental study of such rf discharges
observed that harmonics were excited at the series reso-
nance and can enhance the electron heating [15,16].
Recently, analytic calculations of enhanced Ohmic elec-
tron heating due to nonlinear series resonance excitation
have been described [17–21]. Nonlinear effects on stochas-
tic heating, however, have not been studied yet.

In this work we observe, by means of the nonlinear
global model, significant enhancement of both Ohmic
and stochastic heating of electrons due to the series reso-
nance effect (see [22] for a more complete exposition as
well as particle-in-cell simulations that show the evidence
of the effect). We use a model, which self-consistently
takes into account the dc bias voltage across the sheath,
to calculate Ohmic and stochastic heating for varying gas
pressure. In order to study the effect of the plasma series

resonance on the heating, we distinguish between two
cases: (i) the ‘‘fast’’ dynamics where the plasma series
resonance is excited and (ii) the ‘‘slow’’ (or quasistation-
ary) dynamics, where the self-excitation of the plasma
series resonance is switched off, by neglecting the inertia
of the electrons. We incorporate stochastic heating by
using the ‘‘hard wall’’ model proposed first by Godyak [1].
We argue that the nonlinear plasma dynamics (i.e.,

resonance effects) should be taken into account in order
to describe quantitatively correct the heating mechanisms
of electrons in asymmetric capacitive radio frequency dis-
charges. The integration of nonlinear heating effects into
established rf discharge models should help to remedy the
problem of all simulations of rf discharges to arrive at the
wrong plasma density (which is always too low). Although
our investigation is geared towards capacitively coupled
plasmas, it may also find use in the theory of inductively
coupled plasma (which are the second type of rf plasmas
that dominate the field): Any inductively coupled plasma,
except an idealized one, also has a residual capacitive
coupling. In fact, one may speculate that the E-to-H tran-
sition in inductively coupled plasmas is influenced by
nonlinear resonance effects [23–25].
In order to formulate an effective nonlinear model of the

high-frequency behavior of an asymmetric capacitive radio
frequency discharge, we assume that the plasma can be
strictly separated into bulk and sheath regions. While the
bulk size (of size lP) fills most of the discharge volume, the
sheath forms a thin layer of average thickness lS at the
driven electrode. We thus adopt the ordering �D � lS �
lP, with �D being the Debye length.
We further assume the driving angular frequency !RF to

lie between the ion plasma frequency !Pi and the electron
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plasma frequency !Pe, such that the ions are not affected
by the rf modulation and react only on the phase-averaged
electrical field. For the electrons, we distinguish between
small and large structures. A small structure in this sense is
the sheath, where the electrons follow the electric field
instantaneously. In the discharge as a whole—the large
structure—dynamical effects can occur. In particular, the
plasma series resonance (or the geometrical resonance

frequency) at the frequency !PSR ¼ ½lS=ðlP � lSÞ�1=2!Pe

can be excited. Altogether, we assume for the time scales
the ordering !Pi � !RF <!PSR � !Pe.

The plasma bulk is assumed to be quasineutral and (for
simplicity) homogeneous, ne ¼ ni ¼ n ¼ const. The radio
frequency current through the discharge is carried by elec-
tron conduction alone. The dependence of the current
density on the electric field can thus be modeled by a
generalized Ohm’s law. It takes into account the accelera-
tion of the electrons by the electric field and their momen-
tum loss due to elastic collisions with the neutrals of the
background gas. The collision rate is given by momentum
transfer collision frequency �m. Since we are interested in
both Ohmic and stochastic heating, we incorporate sto-
chastic heating by using the hard wall model and apply
thus an effective collision rate,

�eff ¼ �m þ �ve=lp (1)

where �ve ¼ ð8eTe=�mÞ1=2 is the mean thermal speed, with
Te the electron temperature (in equivalent voltage units)
and m the electron mass [7]. The factor lp, the bulk size,

helps to ‘‘transform’’ stochastic heating, which is a surface
effect, into a volume effect in order to allow for compari-
son with Ohmic heating, which is a volume effect.

Neglecting warm plasma effects, i.e., finite electron tem-
perature, we obtain a generalized Ohm’s law of the form

@~j

@t
¼ e2n

m
~E� �eff

~j: (2)

We also neglect ionization and recombination. The current
density then obeys an equation of continuity,

r � ~j ¼ 0: (3)

For plasmas which are not too large and have at the same
time an electron density that is not too high, electromag-
netic effects can be neglected. Hence, we adopt the electro-

static approximation of Maxwell’s equations, r� ~E ¼ 0.
A detailed discussion of electromagnetic effects in capaci-
tive discharges and the justification of the electrostatic
approximation are given in [26–29].

We assume that the ‘‘ground’’ electrode area is much
larger than the ‘‘powered’’ electrode area. We thus ignore
the impedance of the larger ground electrode sheath. The
voltage drop across the sheath in front of the driven elec-
trode can be modeled by a nonlinear voltage charge rela-
tion. Since we assume the ion density within the sheath to
be homogeneous, the voltage drop VS is related to the

sheath charge QS by VS ¼ Q2
S=2e�0nA

2
E, such that the

sheath capacitance is given by

CS ¼ ð2en�0A2
E=VSÞ1=2 (4)

AE denotes the effective electrode area.
The ion and electron conduction current densities are

taken to be ji0 ¼ envBohm and je ¼ je0 expð�VS=TeÞ, with
vBohm ¼ ðeTe=MÞ1=2 the Bohm speed,M the ion mass, and
je0 ¼ en �ve. (This type of sheath model was first used in
[30] but without including the effect of the bulk plasma and
the resulting series resonance excitation.) The bias capaci-
tance of the electrode sheath is taken to be CB ¼ �0AE=lB,
where lB is taken to be smaller than the minimum sheath
width, such that the oscillatory voltage across CB is small.
After averaging over space and applying Kirchoff’s laws

we obtain a model that allows for nonlinear excitation of
the series resonance in an asymmetric capacitive discharge
[see Fig. 1]. The model consists of a system of first order
nonlinear differential equations for the voltage drop across
the sheath VS, the bias sheath capacitor voltage VB, and the
radio frequency current IP,

dVS

dt
¼ �C�1

S ðIP þ ji0AE � je0AEe
�VS=TeÞ; (5)

dVB

dt
¼ �C�1

B IP; (6)

dIP
dt

¼ L�1
P ðVS þ V̂RF cos!RFtþ VBÞ � �effIP: (7)

LP ¼ lPm=e2nAE denotes the ‘‘inductance’’ (due to elec-
tron inertia) of the plasma bulk.
It is advantageous to write the equations in dimension-

less form. We set the radio frequency period equal to 2�,
which implies that the phase is � ¼ !RFt. To compare the
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FIG. 1. Model used for nonlinear excitation of the series
resonance in an asymmetric capacitive discharge.
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nonlinear resonance effects—the fast dynamics—to those
without resonance, we determine the slow dynamics by
setting the plasma impedance to zero [17].

The equations can be solved by means of numerical
standard methods. We use an adaptive Runge-Kutta
scheme for solving the equations. The solutions are ob-

tained for a set of generic plasma parameters: V̂RF ¼
400 V, !RF ¼ 2�� 13:56 MHz, n ¼ 1015 m�3, Te ¼
3 V, lP ¼ 5:7 cm, lB ¼ 0:0027 cm, AE ¼ 5:72� cm2,
M ¼ argon ion mass, and �m ¼ Kmng, the electron-neutral

momentum transfer collision frequency, Km ¼
10�13 m3 s�1 the rate coefficient, and ngðm�3Þ ¼
3:3� 1022 pðTorrÞ the neutral gas density.

Figure 2 shows the time variations of the sheath charge
QS and plasma current IP for both cases, the fast dynamics
(solid lines) and the slow dynamics (dashed lines) where
resonance effects do not occur. The gas pressure p is set to
5 mTorr. The sheath charge QS in the first plot shows
significant oscillations around the 5th harmonic. The os-
cillations of QS are amplified in the plasma current varia-
tion shown in the second plot, as expected from the
frequency dependence IP / !RFQS. The harmonic content
of IP and IPslow was determined by calculating the fre-
quency spectrum of the dynamics using a fast Fourier
transform. This is shown in the third plot, where the
amplitude of the Fourier transform is given for the fast
(squares) and the slow dynamics (stars). We see a signifi-
cant harmonic content for the total current IP, with the
largest harmonics at 5 and 6, comparable to the height of
the fundamental.

The self-excitation of rf current harmonics in the low-
pressure regime leads to an increase in rms value of the rf
current and thus to significantly enhanced Ohmic dissipa-
tion [18]. The Ohmic dissipation can be calculated from
the plasma current IP by evaluating

�Ohm ¼ h�mLPI
2
Pi (8)

The angle brackets denote the mean square value of the
normalized dissipation. In the case of slow dynamics
where resonances do not occur, the Ohmic dissipation
decrease nearly linearly with decreasing gas pressure
[Fig. 3 (top panel), dashed line]. For the fast dynamics,
the Ohmic dissipation experiences a significant enhance-
ment [Fig. 3 (top panel), solid line]. However, in the limit
p ! 0 the Ohmic dissipation tends to zero.

The stochastic dissipation can be calculated similarly to
(8). After substituting of �m by �ve=lP we obtain

�stoch ¼
�
�ve

lP
LPI

2
P

�
(9)

In the slow dynamics case a constant stochastic dissipation
occurs [Fig. 3 (bottom panel), dashed line]. This is clear
since (linear) stochastic heating does not depend on the gas
pressure. For the fast dynamics case the increased rms
value of the rf current leads to a significant increase in

stochastic dissipation with decreasing pressure [Fig. 3
(middle panel), solid line].
The total dissipation, which is of course the sum of both

Ohmic and stochastic dissipation, for varying pressure for
both cases (the fast and the slow dynamics case) is shown
in Fig. 3 (bottom panel). We can see that, for a range of
relatively low pressures, the series resonance effect in-
creases the dissipation by factors of 2–5.
Based on an effective nonlinear global model of a ca-

pacitive radio frequency discharge, which self-consistently
takes into account the dc bias voltage across the sheath, we
have studied plasma series resonance effects on both
Ohmic and stochastic heating. We demonstrate that the
underlying nonlinear plasma dynamics play a major
role—in particular in the low-pressure regime. Consistent
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FIG. 2. Time variations of sheath charge QS and plasma cur-
rent IP (at a gas pressure p ¼ 5 mTorr) for both cases, the fast
dynamics (solid lines) and the slow dynamics (dashed lines).
Bottom panel: Amplitude of the Fourier transform of the plasma
current (fast dynamics, squares; slow dynamics, stars).
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with recent experimental results [16] and particle-in-cell
simulations [22], we have found that the heating of elec-
trons is enhanced by factors of 2–5 due to self-excitation of
the plasma series resonance and the related harmonic con-
tent in the radio frequency current. We conclude that non-
linear plasma dynamics should be taken into account in
order to describe quantitatively correct the heating mecha-
nisms of electrons in capacitive radio frequency
discharges.
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FIG. 3. Ohmic (top panel), stochastic (middle panel), and total
dissipation (bottom panel) for cases with (solid line) and without
(dashed line) the series resonance effect versus gas pressure p.
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