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3Instituto de Óptica - CSIC Serrano 121, 28006 Madrid, Spain
(Received 15 April 2008; revised manuscript received 30 May 2008; published 22 August 2008)

We report extraordinary effects in the transmission of sound through periodically perforated plates,
supported by both measurements and theory. In agreement with recent observations in slit arrays, M. H. Lu
et al. [Phys. Rev. Lett. 99, 174301 (2007)], nearly full transmission is observed at certain resonant
frequencies, pointing out similarities of the acoustic phenomena and their optical counterpart. However,
acoustic screening well beyond that predicted by the mass law is achieved over a wide range of
wavelengths in the vicinity of the period of the array, resulting in fundamentally unique behavior of
the sound as compared to light.
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Wave phenomena manifest themselves through different
physical realizations [1], ranging from the mechanical
nature of sound to the electromagnetic origin of light. In
particular, the enhanced optical transmission observed in
metallic membranes pierced by subwavelength hole arrays
[2] has prompted interest in areas as diverse as quantum
optics [3] and negative refraction [4]. In the case of acous-
tic waves, full transmission through subwavelength aper-
ture arrays was firstly predicted in [5,6] and confirmed
experimentally for a 1D case in [7]. Similar to light trans-
mission through holes, which is boosted when they are
arranged periodically [2], plates can be made nearly trans-
parent to sound at certain frequencies if they are pierced by
a periodic array of apertures. Like in its optical counter-
part, this extraordinary acoustic phenomenon occurs for
openings much narrower than the wavelength. But in con-
trast to light, (a) small holes drilled in hard materials can
support at least one guided mode, regardless how narrow
they are (provided the hole radius remains larger than the
viscous skin depth of the fluid), and (b) sound penetrates
into the solid depending on the impedance contrast be-
tween fluid and plate, making sound unique and giving rise
to colorful behavior of perforated plates.

We have measured sound transmission in perforated
plates immersed in water at ultrasonic frequencies using
a transducer to generate a pulse that is normally incident on
a plate, transmitted through the sample plate, and detected
by another transducer on the far side of the sample. We use
a couple of transmitter or receiver ultrasonic Imasonic
immersion transducers with 32 mm in active diameter,
-6 dB bandwidth between 169–330 kHz (corresponding
to wavelengths between 4.5 and 8.8 mm in water), and with
a far-field distance of 42 mm. A pulser or receiver genera-
tor (Panametrics model 5077PR) produces a pulse which is
applied to the emitter transducer to launch the signal
through the inspected plate. Each measure consists in the
average over 256 pulses to increase the signal-to-noise
ratio. The plates are 200 mm wide, 350 mm long, and

clamped during the measurements. Each transducer is
located at a distance of 90 mm from the plate and aligned
for normal incidence. The transmission spectrum is then
obtained from the power spectrum of the signal normalized
to the reference signal measured without the plate. Holes
were mechanically drilled to form either periodic square
arrays or disordered arrays, in plates of PMMA, aluminum
and brass. Plates of different thickness t, hole diameter d,
and period of the array p have been examined.

Figure 1(a) shows transmission spectra for various peri-
odic hole arrays drilled in aluminum plates. Two common
distinct features can be observed. First, the transmission is
very low at water wavelengths close to the period, a mani-
festation of Wood anomalies similar to those observed in
optical grating [8]. Perforated plates can thus shield sound
much more effectively than uniform plates. This effect
violates the mass law, shown as a black dashed curve in
Fig. 1(a) and stating that more massive walls produce more
efficient soundproofing [9]. This effect is observed not only
at normal incidence, but also for different tilted angles as
shown in Fig. 1(b). This result can have enormous impact
in soundproofing of machines that require efficient cooling,
with the latter facilitated by the presence of the holes. As a
second feature, plates become completely transparent to
sound for a broad range of wavelengths above the period,
exhibiting a maximum of transmission at a wavelength that
depends both on the filling fraction occupied by holes and
on the ratio between plate thickness and array period.

We can gain further insight into the mechanisms of
sound transmission in these holey arrays through compari-
son with model calculations in the hard-solid limit, that is,
when an infinite impedance contrast is assumed for the
plate-water interface. It effectively translates into a de-
scription of sound via a scalar pressure �, subject to the
wave equation in the water medium and vanishing normal-
derivative boundary condition

 �r2 � k2�� � 0; @n� � 0; (1)
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where k � 2�=� is the wave vector and � is the water
wavelength. In this limit, the pressure field does not pene-
trate into the plate material because the plate-water inter-
face is completely rigid so that the gradient of pressure
must be zero along the interface normal. We rigorously
solve Eq. (1) using an extension of Takakura’s method for
light in a single slit (Ref. [10]). Namely, (i) we expand the
pressure in terms of guided modes inside the circular hole
cavities using Bessel functions with zero derivative at the
wall of the holes. (ii) A Rayleigh plane-wave expansion is
used on either side of the film. (iii) Inside and outside
solutions are matched at the film surfaces to satisfy the
vanishing of the normal derivative at the solid surface and
the continuity of both the field and its derivative at the hole

openings. This results in a set of linear equations involving
the expansion coefficients inside and outside the film.
(iv) The latter coefficients are expressed in terms of the
former, thus reducing the system to a linear set of equa-
tions involving only hole-cavity-mode coefficients for a
representative hole, which we solve for a finite number
of low-order modes. Convergence is achieved for �20
guided modes in the cases explored throughout this work.
This procedure leads to similar analytical results as in
Ref. [5] when only one cavity mode is selected (the prop-
agating, cutoff-free guided mode). We have performed
numerically-converged calculations, which are required
for the wide set of geometrical parameters t=p and d=t
actually tested, as shown by the dots of Fig. 2(a), in which
the contour plot represents the filling fraction of the holes
in the array. Figures 2(b)–2(d) show some measurements
as compared to calculated results (see [11]). No other
approximation beyond the hard-solid limit has been made
in our theory (black solid curves), which agrees well with
experiment [blue (gray) curves] and predicts a transmis-
sion maximum of 100% at wavelengths above the period,
immediately flanked by a minimum of vanishing trans-
mission on the lower wavelength side. This behavior is
reminiscent of Fano resonances produced by coupling of a
discrete state to a continuum [12]. Actually, similar Fano
resonances have been identified in optical transmission
resonances through perforated arrays [13]. In the optical
case, the discrete resonance has been assigned to lattice
singularities originating in Wood anomalies [14–16].
However, the situation is more complicated in sound.

Indeed, the condition of vanishing normal gradient pres-
sure in the hard-solid limit has interesting implications for

FIG. 1 (color online). (a) Measured transmission spectra of Al
plates for different geometrical parameters, as indicated by
labels. For comparison, we show the transmission of a 3-mm
thick plate without holes (black solid curve), along with the
prediction of the mass law for that plate (black dashed curve).
(b) Transmission spectra of the perforated plate with d � 3 mm,
p � 5 mm, and t � 3 mm (solid lines) and the nonperforated
plate with t � 3 mm (dashed lines) at different angles of inci-
dence.
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FIG. 2 (color online). (a) Filling fraction of perforated plates
as a function of t=p and d=t. The dots are the coordinates of
measured samples (see [11]). (b)–(d) Measured [blue (gray)
curves] and calculated (black curves) transmission of arrays
with different geometrical parameters (see insets). The measure-
ments are for 37� 14 holes and the theory corresponds to
infinite arrays [27].
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the performance of the holes, and, in particular, a propa-
gation mode is found confined inside each hole, with
uniform pressure along any plane parallel to the plate,
acting as an acoustic mass. This mode exists for
arbitrarily-large sound wavelength compared to the size
of the openings, similar to the TEM optical mode in
metallic slits and annular holes [17,18]. Fabry-Pérot (FP)
resonances in each hole regarded as a cavity are then set up
by reflection of this mode at the entry and exit sides of the
plate, giving rise to resonant coupling of sound that pro-
duces enhanced transmission at specific wavelengths. A
similar phenomenon has been observed in transmission
through narrow slits [10,19]. Therefore, and in contrast to
light [20], even a single hole produces transmission reso-
nances of sound. In a hole array, the position of the
resonance is dictated by the interplay between the noted
FP resonances and the interaction among holes. And simi-
lar to its optical counterpart, sound transmission displays
Fano profiles as well because it also involves coupling of a
discrete resonant state (the hybrid of FP and lattice reso-
nances) with the continuum of sound propagating in the
surrounding medium (i.e., water in our case). Although
both sound and electron wave functions in quantum me-
chanics respond to the same wave equation in homogene-
ous regions (e.g., Schrodinger’s equation in the latter), the
boundary conditions for electron waves involve the vanish-
ing of the field rather than its derivative at the interface
with infinite-potential regions (the equivalent of our hard-
solid material in sound), thus precluding the existence of
guided modes in narrow hole cavities. These two types of
waves are thus prototypical examples of transmission of
scalar waves through hole arrays in opaque films, showing
extreme boundary conditions.

Another aspect that makes sound transmission unique
with respect to light transmission is the absence of a skin
depth effect. In real solids deviating from the hard-solid
limit, sound can penetrate and is not attenuated exponen-
tially like light inside a metal. Also, the existence of
surface waves in the plate (leaky Lamb waves) and inter-
face waves [21] (Scholte waves) between the plate and the
fluid can play an important role in the sound propagation,
especially if the incidence direction is not normal to the
plate. Our sound transmission study would be analogous in
that instance to optical transmission through holes in di-
electrics of high index of refraction. In other words, con-
ventional materials behave as optical dielectrics for sound,
although the equivalent of metallic behavior, characterized
by a negative dielectric function, has been also observed in
acoustic metamaterials [22].

The above considerations are supported by further in-
vestigating sound transmission in disordered holes arrays,
as compared to transmission in ordered arrays (Fig. 3).
Strong transmission dips and regions of large transmission
do occur in both cases, and so does the Fano mechanism
discussed above, via FP resonances involving TEM modes.
However, the periodicity of ordered arrays facilitates a

cooperative effect in the transmission of the holes, since
translational invariance guarantees a single resonance for
each direction of sound incidence, whereas random arrays
have different resonant wavelengths for different hole en-
vironments (i.e., the interaction of neighboring holes modi-
fies the reflection coefficients of the hole cavity, which
influences in turn the actual wavelength of its FP reso-
nance), thus leading to a transmission spectrum with higher
density of features [Fig. 3(a)], as well as lower values of the
transmission. However, finite size effects and the fact that
the filling fraction is the same in both samples lead to
Fourier plots with similar average periodicity. Therefore,
the dip in transmission of the random array could be
ascribed to pseudoperiodic contributions in the random
sample. Deviations from the hard-solid limit are explored
in Fig. 4 by comparing transmission spectra of arrays with
identical geometry but made of different materials. The
highest impedance ratio under consideration is 25 in brass,
for which the transmission spectrum follows quite closely
the prediction of our hard-solid theory. The second highest
impedance ratio is 11.8 for aluminum, which also mimics
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FIG. 3 (color online). (a) Transmittance spectra of 2-mm thick
aluminum plates pierced by 39� 39 holes of 3 mm in diameter,
distributed periodically (black line, for a period p � 5 mm) and
randomly [red (gray) line]. The transmission without holes is
shown for comparison [blue (light gray) line]. (b) and (c) 2D
Fourier transforms (contour plots in log scale) of the periodic
and random arrays, respectively, showing hot spots of the former
and a broad distribution of the latter in reciprocal space. The
random and the periodic array have the same filling fraction
value in order to appropriately compare their transmission fea-
tures.
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rather well the theory, except for high values of the trans-
mission at wavelengths beyond the maximum, possibly
due to the finite size of the incident wave. This steplike
behavior in the Al plate does not appear for the brass
plate and could be attributed to the lower impedance mis-
match. Finally, the low impedance contrast of PMMA
(only 2.1) results in a completely different spectrum, gov-
erned by the interplay between diffraction at the holes and
sizeable transmission through the bulk of the plate.
Actually, the latter mechanism reveals itself clearly
through a 60% transmission at � � p, in contrast to the
Wood-anomaly dip when transmission is dominated by
sound guiding in the holes.

The large suppression of transmission over relatively
wide wavelength regions centered around the lattice period
in ordered arrays of holes drilled through metallic plates
offers interesting possibilities to shield sound while allow-
ing light to pass through the holes. There are several trans-
mission mechanisms involved in sound passing through
drilled plates, which make them more complicated as
compared to other types of waves, and which produce
interesting interplay phenomena: (1) transmission assisted
by cutoff-free waveguide modes of individual holes; (2) in-
teraction among holes in periodic (or aperiodic) arrays;
(3) direct transmission through the bulk material, in which
the absence of a skin-depth effect allows appreciable con-
tributions in low-impedance-contrast materials, even for
relatively large plate thicknesses. Control over these differ-
ent mechanisms can find potential application to mimic
with sound similar effects as those realized in photonic
metamaterials, like cloaking [23,24], subwavelength imag-
ing [25], and resonant wavelength filtering [26].
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FIG. 4 (color online). Transmission spectra of the d � 3 mm,
p � 5 mm, t � 3 mm perforated plates made of brass, alumi-
num, and PMMA, compared to theory in the hard-solid limit
(black curve).
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