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We extend the shell model Monte Carlo approach to heavy deformed nuclei using a new proton-neutron
formalism. The low excitation energies of such nuclei necessitate low-temperature calculations, for which
a stabilization method is implemented in the canonical ensemble. We apply the method to study a well-
deformed rare-earth nucleus, 162Dy. The single-particle model space includes the 50–82 shell plus 1f7=2

orbital for protons and the 82–126 shell plus 0h11=2, 1g9=2 orbitals for neutrons. We show that the
spherical shell model reproduces well the rotational character of 162Dy within this model space. We also
calculate the level density of 162Dy and find it to be in excellent agreement with the experimental level
density, which we extract from several experiments.
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Introduction.—The shell model Monte Carlo (SMMC)
approach [1,2] has been successful in the calculation of
statistical nuclear properties such as partition functions and
level densities [3,4]. However, most of the SMMC calcu-
lations carried out to date have been limited to medium-
mass nuclei whose deformation is not particularly large
and whose low-temperature properties are well described
by a single major shell. In such medium-mass even-even
nuclei, the gap to the first excited state is �1–2 MeV, and
the ground state can be reached in practice with moderate
values of the inverse temperature �� 3 MeV�1.

For the SMMC approach to be useful across the table of
nuclei, it is necessary to demonstrate its applicability in
heavy nuclei, e.g., the rare-earth region, where the defor-
mation in midshell nuclei can be large and the first excita-
tion energy is �100 keV. Such nuclei present a difficult
technical challenge in SMMC calculations because it is
necessary to propagate to much larger values of ��
20 MeV�1. At moderate and large values of �, the propa-
gator becomes ill conditioned and one must stabilize the
propagation, keeping its large and small scales separated.
Stabilization methods were developed in strongly corre-
lated electron systems in the grand-canonical ensemble [5].
However, nuclear applications require use of the canonical
ensemble, for which stabilization methods are consider-
ably slower. An important issue is whether it is possible to
describe the known rotational behavior of strongly de-
formed nuclei in the framework of a truncated spherical
shell model. Here we provide an affirmative answer, dem-
onstrating our methods for the well-deformed nucleus
162Dy. This is the largest SMMC calculation to date.

SMMC method in proton-neutron formalism.—Since
protons and neutrons occupy different shells, the isospin
formalism is no longer valid, and it is necessary to recast
the SMMC approach in a proton-neutron formalism. A
formulation based on a Tz projection was used in
Ref. [6]. Here we use a more efficient formulation in which
protons and neutrons are treated explicitly. A single-

particle orbital a has good quantum numbers n, l, j, and
is (2j� 1)-fold degenerate (in magnetic quantum number
m) with energy �a. We assume that the single-particle
model space includes Np

s orbitals for protons (including
the magnetic degeneracy) andNn

s orbitals for neutrons. The
two-body interaction matrix elements are given by VppJ ,
VnnJ , and VpnJ for proton-proton, neutron-neutron, and
proton-neutron, respectively. We first rewrite the two-
body interaction in a density decomposition by performing
a Pandya transformation for each type of matrix element to
obtain the matrices EppK , EnnK , and EpnK . Defining the matrix
EK as the 2� 2 block structure with EppK and EnnK as the
diagonal blocks and EpnK , EnpK � �E

pn
K �

T as the off-diagonal
blocks, we have

 H �
X
a

�0an̂a �
X
r

�0rn̂r �
1

2

X
KM

���M�TK�MEK�KM; (1)

where the column vector �KM is composed of both proton
and neutron densities, and �0a (�0r) are shifted proton (neu-
tron) single-particle energies (the shift originates in the
Pandya transformation). The matrix EK is real symmetric
and can be diagonalized by an orthogonal transformation.
The quadratic two-body term in (1) can then be written as
H02 �

1
2

P
K��K�

P
M���

M�K�M����KM���, with �K�
being the eigenvalues of EK. The eigenvectors �KM���
are linear combinations of proton and neutron densities.

In the Condon-Shortley convention, the time-reversed
density is given by ��KM�ac� � ~����K�M�K�M�ac�,
where ~� � ���la�lc is the particle-hole parity. We can
then rewrite the two-body part of the Hamiltonian as
H02�

1
2

P
K�VK�

P
M	0
Q

2
KM����R

2
KM����, where VK� �

~����K�K�, and QKM, RKM are proportional to the real
and imaginary parts of �KM (where complex conjugation
is defined by time reversal). A Hubbard-Stratonovich
(HS) transformation can be directly applied to this qua-
dratic form. The resulting decomposition has a good
Monte Carlo sign when VK� < 0 for all K;�. The one-
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body Hamiltonian of the propagator U� in the HS inte-
grand is a linear combination of proton and neutron den-
sities, and the corresponding propagator is a product of
proton and neutron one-body propagators. The computa-
tional cost is thus smaller than the method used in Ref. [6],
in which the dimension of the propagator matrix is Np

s �
Nn
s . The calculations are done in the canonical ensemble

using particle-number projection for both protons and
neutrons.

Stabilization.—In SMMC calculations, the evolution
operator for a given sample is calculated as a product of
one-body propagators of time slice ��. The number of
matrix multiplications increases with �, and the propaga-
tor matrix might become ill conditioned; i.e., the ratio of its
largest to smallest eigenvalue is too large. Large and small
numerical scales get mixed in the propagation, resulting in
the loss of important information.

A method was proposed to stabilize matrix multiplica-
tion in the grand-canonical formulation [5]. The method is
based on the decomposition of a matrix M into the form
M � ADB where A, B are well-behaved under multiplica-
tion andD is a diagonal matrix whose elements are positive
numbers containing the various scales. In the singular
value decomposition (SVD), the matrix M has the form
M � UDV where U and V are unitary matrices. In the
modified Gram-Schmidt (MGS) decompositionM � LDV
or M � UDR where L (R) is a lower (upper) triangular
matrix with diagonal elements 1. We have adopted the
MGS decomposition, which can be substantially faster
than SVD [7]. In SMMC calculations, it is necessary to
stabilize the canonical propagator. Since the canonical
formulation is accomplished by a particle-number projec-
tion, each term in the quadrature sum must be stabilized.

Choice of model space and interaction.—To describe
the rotational character of a midshell rare-earth nucleus, it
is necessary to use a sufficiently large single-particle
model space. To determine the required single-particle
orbitals, we consider a Woods-Saxon (WS) plus spin-
orbit mean-field potential. The spherical orbitals of this
potential are j�jmi, where � represents the quantum num-
bers n, l. Introducing an axial deformation �2 in the WS
potential, we determine its eigenstates jkmi and expand
them in the spherical orbitals, jkmi �

P
�jc

m
k;�jj�jmi.

The spherical occupations are then given by r�j �
1

2j�1

P
kmjc

m
k;�jj

2hnkmi, where hnkmi are the occupations of
the deformed orbitals (1 below the Fermi energy and 0
above). In a shell model approach, we should include in our
model space the physically important spherical orbitals,
while the influence of all other orbitals is taken into ac-
count by renormalizing the interaction. Here we include
the orbitals that satisfy 0:1< r�j < 0:9 at �2 � 0:35. This
determined the model space to be 0g7=2, 1d5=2, 1d3=2,
2s1=2, 0h11=2, 1f7=2 for protons, and 0h11=2, 0h9=2, 1f7=2,
1f5=2, 2p3=2, 2p1=2, 0i13=2, 1g9=2 for neutrons. It includes
orbitals outside the corresponding 0@! major shells, in
contrast to Ref. [8]. The computational time for this model

space is longer by more than an order of magnitude as
compared with SMMC calculations in the fpg9=2 shell
[3,4].

As an effective interaction, we use the dominant collec-
tive parts of realistic interactions: monopole pairing and
multipole-multipole interactions. This interaction is simi-
lar to the one used in Ref. [3] except that protons and
neutrons occupy different orbitals

 �
X
��p;n

g�P
y
�P��

X
�

	� : �O�;p�O�;n� � �O�;p�O�;n� : :

(2)

Here Py� �
P
nljm���

j�m�laynljm;�a
y
nlj�m;� (� � p, n) is the

J � 0 pair creation operator, :: denotes normal ordering,
and O�;��

1���������
2��1
p

P
abhjajj

dVWS

dr Y�jjjbi
a
y
�aja;�� ~a�bjb;��

���

is a surface-peaked multipole operator [~ajm �
��1�j�maj�m and VWS is the central part of the WS poten-
tial]. We include quadrupole, octupole, and hexadecupole
terms (i.e., � � 2, 3, 4) with corresponding strengths 	� �
	k�. The parameter 	 is determined self-consistently [9]
and k� are renormalization factors accounting for core
polarization effects.

To determine k2, we note that the ‘‘slope’’ of ln��Ex�
[��Ex� is the total level density] at higher energies is
sensitive to 	2. We find that a value of k2 � 2:12 repro-
duces the slope of the experimental ln��Ex� in the finite-
temperature Hartree-Fock-Bogoliubov (HFB) approxima-
tion. This value is close to the value of k2 � 2 used in
Ref. [3]. For the octupole and hexadecupole interactions
we take k3 � 1:5 and k4 � 1 [3].

In Ref. [3] we determined the pairing strength to repro-
duce the experimental odd-even mass differences in neigh-
boring spherical nuclei using number-projected BCS
calculations. Following a similar method for spherical
nuclei in the mass region Z � 50–82, N � 82–126, we
obtain gp � 10:9 MeV=Z and gn � 10:9 MeV=N. Here
we find however that a reduction in the values of gp and
gn is necessary to reproduce the moment of inertia of the
ground-state band, and use a reduction factor of 0.77 (see
below). Part of this reduction may be ascribed to fluctua-
tions of the pairing fields.

For the one-body Hamiltonian we use the single-particle
orbitals of the spherical WS plus spin-orbit potential. Since
the WS potential represents a mean-field potential, we
determine the bare single-particle energies so they repro-
duce the WS single-particle energies in the Hartree-Fock
(HF) approximation.

Ground-state energy and moment of inertia.—We dem-
onstrate our methods for a typical strongly deformed rare-
earth nucleus, 162Dy. To determine the ground-state energy
it is necessary to extrapolate the thermal energy to � � 1.
We carried out stabilized calculations at large � values
(up to � � 20 MeV�1) using time slices of �� �
1=32 MeV�1 and �� � 1=64 MeV�1. The SMMC ther-
mal energy (averaged over its values at the two time slices)
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is shown versus T in the top panel of Fig. 1 (solid circles).
The bottom panel of Fig. 1 shows hJ2i versus T for �� �
1=64 MeV�1 (J is the total angular momentum).

A simple way to extract the ground-state energy E0 is to
assume a ground-state rotational band EJ � E0 � @

2J�J�
1�=2Ig with a moment of inertia Ig. At sufficiently low
temperatures, only the ground band contributes to thermal
observables and a simple calculation gives

 E�T�  E0 � T; hJ2i  2IgT=@2: (3)

Fitting a straight line of slope 1 to E�T�, we find E0 �
�375:387� 0:019 MeV. Comparing with the HFB
ground-state energy of EHFB � �372:263 MeV, we deter-
mine a correlation energy of EHFB � E0 � 3:124�
0:019 MeV.

By fitting a straight line 2IgT=@
2 to hJ2i, we also

determine the moment of inertia Ig=@
2 � 35:8�

1:5 MeV�1 of the ground-state band. This value agrees
with the experimental value of 37:2 MeV�1, extracted
from the excitation energy of the first 2� state (80.7 keV).

The SMMC results for hJ2i agree with the second rela-
tion in (3), derived under the assumption of a rotational
band. This provides evidence that our model space is
sufficient to reproduce the rotational behavior of this
strongly deformed nucleus within a truncated shell model
approach. We also show in Fig. 1 results of a fit to hJ2i
assuming a vibrational model (dot-dashed line). Our
SMMC results clearly indicate that the low-lying levels
of our shell model Hamiltonian are not vibrational.

To test the validity of the one-band approximation, we
show in Fig. 1 results for E�T� and hJ2i calculated using the
five lowest experimental bands in 162Dy (dashed lines).
The one-band expressions (3) are seen to be valid for T &

0:16 MeV down to T  0:05 MeV.

Level density.—We use the saddle-point expression for
the level density in terms of the canonical entropy and heat
capacity [3], which in turn can be extracted from the
thermal energy E���. Discretization of � introduces sys-
tematic errors in E���, and we found it necessary to
extrapolate to �� � 0 using two time slices �� � 1=32,
1=64 MeV�1. For � � 3:25 MeV�1 we used a linear ex-
trapolation in �� while for larger values of � the depen-
dence on �� is weaker and we took an average value. The
results for E��� (stabilized for �> 3 MeV�1) are shown
in the inset of Fig. 2. For comparison we also show E��� in
the HFB approximation (dot-dashed line).

The SMMC level density is shown by the solid circles in
Fig. 2. It agrees very well with a composite-formula level
density (dashed line), which we extract from several ex-
periments (see below). For comparison, we also show the
HFB level density (dot-dashed line). We observe strong
enhancement of the SMMC level density relative to the
HFB density. Indeed the latter describes only the intrinsic
states while the SMMC results include all states and, in
particular, the rotational bands.

Experimental level density.—There are various experi-
mental data that can be used to determine the level density
of 162Dy: an almost complete level scheme at low excita-
tions (Ex & 2 MeV) [10–12], neutron resonance data at
Ex � 8:196 MeV [13], and data obtained by the so-called
Oslo method [14,15].

In our level density studies in midmass nuclei, we used a
back-shifted Bethe formula (BBF) to parametrize the
SMMC level density and compared with similarly parame-
trized data [16]. Here we find that at low excitations a
constant temperature formula works better than the BBF.
We therefore use a composite formula [17] that combines a
constant temperature formula and a BBF
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FIG. 2. Total state density of 162Dy. The SMMC results (solid
circles) are compared with the experimental state density
(dashed line) and the HFB state density (dot-dashed line).
Inset: thermal energy E versus � (for �> 2 MeV�1) in
SMMC (circles) and in HFB (dot-dashed line). The open circles
indicate stabilized calculations.
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FIG. 1. Low-temperature thermal energy E (top panel) and
hJ2i (bottom panel) versus temperature T in 162Dy. The
SMMC results (solid circles) are fitted to (3) (solid lines). The
dashed lines are results obtained from the lowest five experi-
mental bands in 162Dy. The dash-dotted line (bottom panel) is a
fit to the vibrational model result.

PRL 101, 082501 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

082501-3



 ��Ex� �

(
exp
�Ex � E1�=T1� Ex < EM
�1=2a�1=4

12�Ex���5=4 e2
��������������
a�Ex���
p

Ex > EM:
(4)

The two formulas are matched at an energy EM assuming
the continuity of the level density and its derivative.

To determine the state density at low energies we con-
struct the staircase function N�Ex� (counting number of
states below Ex) and fit it to a sixth-order polynomial (top
panel of inset to Fig. 3). Its derivative (solid line in bottom
panel of inset) describes the average state density ��Ex�.
We observe that ln��Ex� is well fitted by a straight line
in the range 0:6<Ex < 1:8 MeV, determining E1 �
�0:73 MeV and T1 � 0:36 MeV. For a given EM, the
parameters a and � in (4) are determined by the matching
conditions. s-wave neutron resonance data determine the
sum of the level densities for spin I � 1=2 (I is the spin of
the target nucleus) at the neutron separation energy. Using
a spin cutoff parameter of �2 � IT=@2, with the rigid-
body moment of inertia I  0:015A5=3

@
2 and T � 
�Ex �

��=a�1=2, we obtain the total level density at the neutron
resonance energy Ex � 8:196 MeV, where the spin cutoff
model is valid [18]. Additional data are from recent
gamma-ray spectroscopy experiments [15] using the Oslo
method [14], which determines ln��Ex� up to a linear
function b0 � b1Ex with appropriate constants b0 and b1.
The measured level density is converted to state density
using a rigid-body moment of inertia. Since at low excita-
tions the moment of inertia is reduced from its rigid-body
value, we only use the Oslo data for Ex 	 4 MeV. The
matching energy EM, together with b0 and b1, is deter-
mined by a 	2 fit of ln��Ex� to the Oslo and neutron
resonance data. We find EM � 1:752� 0:036 MeV, which

in turn determines a � 18:28� 0:15 MeV�1 and � �
0:421� 0:014 MeV. The corresponding composite den-
sity is shown by the dashed lines in Figs. 2 and 3, and is
in very good agreement with the SMMC state density.

Conclusion.—We have extended the shell model
Monte Carlo approach to heavy deformed nuclei using a
new proton-neutron formalism. A stabilization method is
implemented in the canonical ensemble to accurately de-
scribe the low-energy properties of such nuclei. Applying
the method to 162Dy, we show that the spherical shell
model approach reproduces well the rotational character
of this nucleus, as long as a sufficiently large model space
and an appropriate effective Hamiltonian are used. We also
calculate the level density of 162Dy and find it to be in
excellent agreement with the experimental level density.
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FIG. 3. Experimental state density of 162Dy. Histograms are
from level counting [10–12], solid squares are renormalized
Oslo data [15], and the triangle is the neutron resonance data
[13]. The dashed line is a fit to the composite formula (4). Inset
(top): the experimental staircase function N�Ex� (histograms)
and its fit to a sixth-order polynomial (solid line). Inset (bottom):
average level density obtained by a derivative of the fit to N�Ex�
(solid line) and its fit to a constant temperature formula (dashed
line).
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