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We study the ratio R � �GEðQ2Þ=GMðQ2Þ of the proton at very small values of Q2. Radii commonly

associated with these form factors are not moments of charge or magnetization densities. We show that the

form factor F2 is correctly interpretable as the two-dimensional Fourier transformation of a magnetization

density. A relationship between the measurable ratio and moments of true charge and magnetization

densities is derived and used to show that the magnetization density extends further than the charge

density, in contrast with expectations based on the measured reduction of R as Q2 increases.
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Electromagnetic form factors of the proton and neutron
(nucleon) are probability amplitudes that the nucleon can
absorb momentum and remain in the ground state, and
therefore should determine the nucleon charge and mag-
netization densities. Much experimental technique, effort,
and ingenuity have been used recently to measure these
quantities [1,2].

The textbook interpretation of electromagnetic form
factors, GE;GM, explained in [2], is that their Fourier
transforms are measurements of charge and magnetization
densities, and conventional wisdom relates the charge and
magnetization mean square radii to the slopes of GE;M at

Q2 ¼ 0. However, this interpretation is not correct because
the wave functions of the initial and final nucleons have
different momenta and therefore differ, invalidating a
probability or density interpretation. A proper charge den-
sity is related to the matrix element of an absolute square of
a field operator.

Here we show that the magnetization density is the two-
dimensional Fourier transform of the F2 form factor. This,
and the result that the charge density is the two-
dimensional Fourier transform of the F1 form factor [3–
6], is used to show that the magnetization density of the
proton extends significantly further than its charge density.
This is surprising because the observed rapid decrease of
the ratio of electric to magnetic form factors with increas-
ing values of Q2 [1,2] might lead one to conclude that the
charge radius is larger than the magnetization radius.

Form factors are matrix elements of the electromagnetic
current operator J�ðx�Þ,

hp0; �0jJ�ð0Þjp; �i ¼ �uðp0; �0Þ
�
��F1ðQ2Þ

þ i
���

2M
q�F2ðQ2Þ

�
uðp; �Þ; (1)

in units of the proton charge, where the momentum transfer
q� ¼ p0

� � p�, and Q2 � �q2 > 0. The nucleon polar-

ization states are of definite light-cone helicities �; �0 [7].
The normalization is such that F1ð0Þ ¼ 1, and F2ð0Þ is the
proton anomalous magnetic moment �a ¼ 1:79. The

Sachs form factors are GEðQ2Þ � F1ðQ2Þ � Q2

4M2 F2ðQ2Þ,
GMðQ2Þ � F1ðQ2Þ þ F2ðQ2Þ. The quantities GE;GM are
experimentally accessible so we define the usual effective
(*) square radii R�2

E , R�2
M such that for small values of Q2

the accurately measurable [8] ratio is

�GEðQ2Þ=GMðQ2Þ � 1þQ2

6
ðR�2

M � R�2
E Þ; (2)

where � ¼ 2:79.
In contrast, the form factor F1 is a two-dimensional

Fourier transform of the true charge density �ðbÞ, where
b is the distance from the transverse center of mass position
irrespective of the longitudinal momentum [3–6]. At small

values of q2, F1ðQ2 ¼ q2Þ � 1� Q2

4 hb2iCh where hb2iCh is
the second moment of �ðbÞ.
We now interpret F2 in terms of a magnetization density.

The starting point is the relation that � � B is the matrix
element of J �A in a definite state, jXi. We note that the
magnetic dipole density, or magnetization in the language
of classical E andM texts, is a vector density and therefore
contains a direction as well as a magnitude.
Take the rest-frame magnetic field to be a constant

vector in the 1 (or bx) [9] direction, and the corresponding
vector potential asA ¼ Bbyẑ. Then consider the system in

a frame in which the plus component of the momentum
approaches infinity. The anomalous magnetic moment may
be extracted by taking

jXi � 1ffiffiffi
2

p ½jpþ;R ¼ 0;þi þ jpþ;R ¼ 0;�i�; (3)

where jpþ;R ¼ 0;þi represents a transversely localized
state of definite Pþ and light-cone helicity. The state jXi
[4,10] may be interpreted as that of a transversely polarized
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target, up to relativistic corrections caused by the trans-
verse localization of the wave packet [11]. The anomalous
magnetic moment �a [12] is then computed to be

�a ¼
hXjR dx�d2bby �qðx�;bÞ�þqðx�;bÞjXi

hXjXi : (4)

Use translational invariance to obtain

�a ¼ hXj
Z

d2bbyq
y
þð0;bÞqþð0;bÞjXi; (5)

where qðx�;bÞ is a quark-field operator, and qþ ¼ �0�þq.
This quantity is also an electric dipole moment. This is
because we use a frame in which either the nucleon or the
observer is moving very fast. Objects with magnetic mo-
ments in the rest frame seem to have an electric dipole
moment when viewed from a moving frame [13].

This matrix element of a quark density operator is
closely related to Burkardt’s [4,10] impact parameter gen-
eralized parton distributions (GPD):

qXðx;bÞ�hXj
Z dx�

4�
qyþð0;bÞqþðx�;bÞeixpþx�jXi

¼ 1

2pþ

�
H qðx;	¼0;bÞ� 1

2M

@

@by
Eqðx;	¼0;bÞ

�
;

(6)

whereH q and Eq are two-dimensional Fourier transforms

of the GPDs Hq; Eq [14]. Integration of Eq. (6) over x sets

x� to zero, so that Eq. (5) can be reexpressed (after
integration by parts) as

�a ¼ 1

2pþ
Z

d2b
Z

dxEqðx; 	 ¼ 0; bÞ: (7)

But the integral of Eq over x is just the two-dimensional

Fourier transform of 2pþF2, so that

�a ¼
Z

d2b�MðbÞ; (8)

where

�MðbÞ ¼
Z d2q

ð2�Þ2 F2ðt ¼ �q2Þeiq�b: (9)

The subscript M denotes that this density generates the
anomalous magnetic moment. The quantity �MðbÞ is prop-
erly a true magnetization density. The result Eq. (8) is a
light-cone version of the usual calculation of magnetiza-
tion density M, the difference between B and H, obtained
by summing the magnetic dipoles in a given small volume.

It is also possible to consider the quantity
�R

dxby
@
@by

Eqðx; 0; bÞ as the magnetization density.

However, this definition would depend on the choice of
the x axis as the direction of the magnetic field. A true
intrinsic quantity should not depend on such a choice, so
we use the form of Eqs. (7)–(9). Note that performing the
integral Eq. (9) yields the result that the proton �MðbÞ,

constructed from the basic definition of the magnetic mo-
ment, is a positive definite quantity. This is in contrast to
the transverse density �T of [15].

For small values of q2: F2ðQ2 � q2Þ � �að1� Q2

4 �
hb2iMÞ, where hb2iM is the second moment of �MðbÞ. Use
the definitions of the Sachs form factors, Eq. (2), and the
low Q2 expansions to relate the true moments to the
effective square radii so that

hb2iM � hb2iCh ¼ �

�a

2

3
ðR�2

M � R�2
E Þ þ �

M2
: (10)

The low Q2 measurement of the form factor ratio deter-
mines also the difference of true moments hb2iM � hb2iCh,
which is approximately the difference of the effective
square radii plus a specific relativistic correction �

M2 �
0:1235 fm2. This is the consequence of the Foldy term
[16], arising from the interaction of the anomalous mag-
netic moment of the nucleon with the external magnetic
field of the electron.
Using the high precision results from polarization trans-

fer experiments (generally accepted to be less sensitive to
two-photon exchange effects [17]) we compare the world’s
data set for �GE=GM with Eq. (2) in Fig. 1. We fix the
value of R�

M from a new state-of-the-art determination [18],
R�
M ¼ 0:778ð29Þ fm and plot the data as a function of the

parameter Q2

6 R�2
M . We find

hb2iM � hb2iCh ¼ 0:109 60� 0:006 78 fm2; (11)

/62
MR*2Q

0.0 0.5 1.0

P M
/G

P E
Gµ

0.9

1.0

1.1

Ron et al.

Crawford et al.

Pospischil et al.

Gayou et al.

Dietrich et al.

Milbrath et al.

)2
E-R*2

M
(R*

6

2Q 1 + 

ch>2=<bM>2<b

/NDF=13.33/142χ

2 0.00678 fm± = 0.10960 ch>2 - <bM>2<b

FIG. 1 (color online). Results of a linear fit to world data set of
high precision polarization transfer experiments [33–38], shown
by the solid (blue) line and error band. The shaded area indicates
hb2iCh > hb2iM. The dashed (red) line shows the critical slope
Sc ¼ � 3

2


M2 [Eq. (10)] giving hb2iM ¼ hb2iCh.
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which is about 12% smaller than the contribution of the
magnetic moment Foldy term. Thus the difference 2

3
�

 �

ðR�2
M � R�2

E Þ ¼ �0:0139� 0:006 78 fm2 presently has the
opposite sign of the result for the difference of the true
moments of the distribution, indicating the need to base
interpretations on the true moments. Note also that ðR�2

M �
R�2
E Þ is determined to an accuracy of only about 50%.

Improving the accuracy can only be achieved by using
very small values of Q2, for which no high precision
polarization transfer results exist. However, cross section
measurements that have been corrected for the effects of
the exchange of two photons are consistent with the ratio
R ¼ 1 [19], corresponding to R�

M ¼ R�
E in rough agree-

ment with our results.
Figure 2 shows several model calculations and fits for

the form factor ratio [17,19–29], which vary greatly.
Improved experiments [8] would be able to distinguish
these diverse approaches, and more fundamentally, better
determine the value of ðR�2

M � R�2
E Þ. We also use a linear fit,

at small values of Q2, to the results of various calculations
and some global fits. These are shown in Fig. 3. While there
is significant variation, all agree with our result Eq. (11).

Our result that the magnetization density extends further
than the charge density is consistent with the failure of the
spin of the quarks to account for the angular momentum of
the proton [30], and the likely importance of quark orbital
angular momentum (OAM). This is because quarks carry-
ing OAM, and therefore much magnetization-generating
current, are located away from the center. For example,
consider the pion cloud, which dominates the proton’s

exterior, as a source of OAM. The pion cloud is more
influential for magnetic properties than for electric ones
(e.g., Refs. [31,32]), and causes a proton magnetization
radius that is larger than the charge radius.
To reiterate, our model-independent result is that the

magnetization density of the proton extends further than
its charge density. A natural interpretation involves the
orbital angular momentum carried by quarks. Future ex-
perimental measurements of the ratio of the proton’s elec-
tromagnetic form factors would render the present results
more precise.
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FIG. 3 (color online). hb2iM � hb2iCh from recent calculations
and fits. All fits and calculations yield a positive value. The solid
(blue) line shows the result Eq. (11).
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