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We present a general prescription for the holographic computation of real-time n-point functions in

nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in

the complex time plane. The holographic prescription amounts to ‘‘filling in’’ this contour with bulk solu-

tions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are

filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the

contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using

this prescription and by showing that this leads to an unambiguous answer with the correct i� insertions.
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The gravity/gauge theory duality has been one of the
most far reaching developments in recent years. On the one
hand it opens a window into strong coupling dynamics of
gauge theories and on the other hand it provides a realiza-
tion of holography and offers a new perspective in gravi-
tational physics. In recent times, it has found applications
that range from phenomenology to condensed matter
physics.

The foundational papers on the subject [1] laid down the
basic principles of the duality. The detailed dictionary
between bulk and boundary physics, however, is best
understood to date in the supergravity approximation and
in the Euclidean regime; i.e., the bulk solution involves a
hyperbolic Riemannian manifold and the boundary theory
is Wick-rotated. While this suffices for many applications,
there are also many reasons for developing a general real-
time prescription. Such a real-time formalism should be
used, for example, in studies of time-dependent pheno-
mena, analysis of gauge theories in nontrivial pure or
mixed states, or the holographic interpretation of nonsta-
tionary spacetimes.

Such a formalism, applicable at the same level of gen-
erality as the corresponding Euclidean prescription, would
constitute an integral part of the definition of the holo-
graphic correspondence and as such is important on gen-
eral grounds. Furthermore, there is an urgency for setting
up such a formalism since interesting current applications,
for example the holographic modeling of the quark-gluon
plasma, crucially involve real-time physics. Actually much
of the recent work on real-time holographic prescriptions
was driven by such applications, see [2] for a review. The
aim of this work is to provide a concrete, first principles
prescription that covers all n-point functions and is appli-
cable for any quantum field theory (QFT) that has [an
asymptotically anti–de Sitter (AdS)] holographic dual.
Previous work on this subject includes [3–5] and our
results agree with these works when we restrict to their
respective domains of validity.

The basic Euclidean holographic dictionary identifies
the boundary conditions �ð0Þ for the bulk fields � to

sources of the dual boundary operators and the bulk parti-
tion function, which is a functional of these boundary
fields, to the generating functional of connected n-point
functions. The main new issue that arises in the Lorentzian
context is that in the bulk, on top of specifying boundary
conditions �ð0Þ, one also needs to specify initial and/or

final conditions �� for all fields, and the bulk partition
function is also a functional of these. The main question is
to understand their meaning in the dual QFT. Intuitively,
�� should be related to QFT in- and out-states [6], but an
exact prescription to translate QFT states to initial and final
boundary data for the bulk fields has not previously been
worked out.
Let us briefly recall some QFT basics that are relevant to

our discussion. Consider a field configuration with initial
condition ��ð ~xÞ at t ¼ �T and final condition �þð ~xÞ at
t ¼ T. The path integral with fields constrained to satisfy
these conditions produces the transition amplitude
h�þ; Tj��;�Ti. If we are interested in vacuum ampli-
tudes we should multiply this expression by the vacuum
wave function h0j�þ; Ti and h��;�Tj0i and integrate
over �þ, ��. The insertion of these wave functions is
equivalent to extending the fields in the path integral to
live along a contour in the complex time plane as
sketched in Fig. 1. Indeed, the infinite vertical segment
starting at �T corresponds to a transition amplitude
lim�!1h��;�Tje��Hj�i for some state j�i, which is

however irrelevant since taking the limit projects it onto
the vacuum wave function h��;�Tj0i. Similarly, we ob-
tain h0j�þ; Ti from the vertical segment starting at t ¼ T.
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FIG. 1. The contour in the complex time plane used to obtain
vacuum-vacuum amplitudes.

PRL 101, 081601 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

22 AUGUST 2008

0031-9007=08=101(8)=081601(4) 081601-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.081601


Recall also that these wave function insertions ultimately
lead to the i� factors in the Feynman propagators.

If one wants to compute expectation values in nontrivial
states or thermal ensembles then one should consider
different time contours, like a real-time thermal contour
or a closed in-in contour.

Prescription.—The holographic prescription we propose
is to use ‘‘piecewise’’ holography: for each real segment of
the time contour we consider a Lorentzian solution and for
each imaginary part an Euclidean solution. At the corners
of the contour, the various bulk solutions are joined to-
gether using standard matching conditions; i.e., the in-
duced values of the fields and their conjugate momenta
should be (appropriately) continuous along the gluing sur-
face, which is some hypersurface in the bulk. This results
in a completely holographic prescription where all data are
encoded in the conformal boundary of the entire space-
time; the initial and final states are encoded in the boundary
of the Euclidean parts.

The next step is to compute the value of the combined
(Euclidean plus Lorentzian) on-shell actions and then vary
these with respect to sources to obtain the renormalized
holographic 1-point functions in the presence of sources.
This results in a formula that relates the 1-point function to
the asymptotics of the bulk solution [7]. Recall that the
holographic renormalization required in this procedure
relies on having sufficient control over the asymptotics of
the bulk solutions. This analysis, however, is independent
of the signature of the spacetime, so all standard results
carry over immediately. One only needs to check that the
corners where Lorentzian and Euclidean solutions are
joined do not introduce any complications. The matching
conditions ensure that this is the case, as will be described
elsewhere [8].

As usual, to compute holographic n-point functions we
need to solve the bulk field equations to order ðn� 1Þ
around the bulk solution. The result should then be sub-

stituted in the ðn� 1Þth variation of the holographic 1-
point function to obtain the n-point function. Of course, for
this procedure to be well posed, the solution to these bulk
field equations, subject to boundary conditions as specified
above, must be unique. On general grounds we expect that
the prescription given here has this property, since we
specify enough data, and we will also illustrate this in the
first nontrivial example below.
Example.—We now illustrate our general discussion in

the simplest possible setup. Namely, we will discuss the
duality for the contour of Fig. 1, and compute a conformal
field theory (CFT) two-point function to show that we find
the correct i� insertions. A more extended discussion that
includes a discussion of examples corresponding to other
time contours (thermal, closed time, etc.), fields, Asymp-
totically AdS spacetimes, etc., will be presented in [8].
As discussed above, the contour in Fig. 1 corresponds to

real-time vacuum-to-vacuum correlators. Although the dis-
cussion can be easily done for any CFTd (with a holo-
graphic dual), for concreteness we specialize here to
d ¼ 2. Including the spatial S1 direction, we have redrawn
the contour in Fig. 2, and we have also compactified the
Euclidean semi-infinite cylinders by adding a point at
infinity. The corners of the contour are two circles which
we denote as C�. The prescription now amounts to holo-
graphically filling in this surface with a bulk manifold
consisting of three components, namely, a segment ML

of Lorentzian AdS3 and two ‘‘caps’’ M� consisting of
half of Euclidean AdS3. One can view these caps as pro-
viding a Hartle-Hawking wave function on the hypersur-
faces S� (where @S� ¼ C�). In this respect, our
prescription is not only field theory inspired but also in
line with standard considerations on wave functions in
quantum gravity [9]; see [5,10] for a related discussion in
the context of AdS=CFT.
We now propose that the relation between bulk and

boundary quantities reads

h0jT exp

�
�i

Z
�ML

ddx
ffiffiffiffiffiffiffi�gp

�ð0ÞO
�
j0i ¼ expðiIL½�ð0Þ; ��; �þ� � IE½0; ��� � IE½0; �þ�Þ (1)

with �ML the conformal boundary of ML as in Fig. 2,
IL½�ð0Þ; ��; �þ� the on-shell Lorentzian action for ML

that depends not only on �ð0Þ but also on initial and final
data��, and IE½�ð0;�Þ; ��� the Euclidean on-shell actions
on the half-Euclidean spaces M� with sources �ð0;�Þ and
boundary condition �� at S�. In (1) we set the sources
�ð0;�Þ to zero since we are interested in vacuum-to-vacuum
correlators. Nonzero values for �ð0;�Þ would correspond to
changing the initial and/or final state, as it does in the CFT.
As the notation indicates, we expect (and this will be
verified below) that this procedure leads to time-ordered
products.

Finally, we need to fix �� by specifying the behavior of
the solution at the corners. This we do by imposing the
following two ‘‘matching conditions’’ for the fields across

the S�: (i) As is already indicated in (1), we impose that the
induced values of the bulk fields, so the ��, are the same
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FIG. 2. The CFT2 contour, with the spatial circle and points at
infinity added. Our prescription is to fill it in with an AdS
spacetime consisting of three parts as well. The corners C�
extend to hypersurfaces S� in the bulk, and �ML is the cylin-
drical conformal boundary of ML.
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on both sides of S�. (ii) We also demand stationarity of the
combined on-shell supergravity actions with respect to
variations with respect to ��:

�

���
ðiIL½�ð0Þ; ��; �þ� � IE½�ð0;�Þ; ���

� IE½�ð0;þÞ; �þ�Þ ¼ 0 (2)

which should be read as an equation for ��.
Some comments are in order. First, since we think of the

bulk solution as a saddle point to some stringy path inte-
gral, these conditions are a direct consequence of the
saddle-point approximation. Second, taking derivatives of
an on-shell action gives the conjugate momentum, so we
obtain the standard junction conditions [11], except for
extra factors of i. Last, the data �� should be compatible
with �ð0Þ and �ð0;�Þ at the corners C�. In the example

below, we will see how this is done.
Two-point function.—We now specialize to a free mas-

sive scalar �, propagating without backreaction on empty
AdS3, capped off with two Euclidean half-balls as in Fig. 2.
Our aim is to holographically compute the two-point func-
tion of the operator O dual to �, including the correct
i� terms, with the above prescription. The relevant part of
the supergravity action is simply

S ¼ 1

2

Z
d3x

ffiffiffiffiffiffiffi
jGj

p
ð�@��@���m2�2Þ: (3)

The dimension of O is � ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
¼ 1þ l with

l 2 f0; 1; 2; . . .g.
First consider the scalar field solution in the Lorentzian

spacetime without the caps. In the AdS3 background,

ds2 ¼ �ðr2 þ 1Þdt2 þ dr2

r2 þ 1
þ r2d�2;

the mode solutions to the Klein-Gordon equation are of the
form e�i!tþik�fð!;�k; rÞ with
fð!; k; rÞ ¼ C!klð1þ r2Þ!=2rkFð!̂kl; !̂kl � l; kþ 1;�r2Þ

¼ rl�1 þ . . .þ r�l�1�ð!; k; lÞ½lnðr2Þ
þ �ð!; k; lÞ� þ . . .

where !̂kl ¼ ð!þ kþ 1þ lÞ=2, C!kl is a normalization
factor chosen such that the coefficient of the leading term
equals 1 and in the last line we omitted terms of lower
powers of r and some terms polynomial in ! and k (which
would lead to contact terms in the 2-point function).
Furthermore,

�ð!; k; lÞ ¼ ð!̂kl � lÞlð!̂kl � k� lÞl=ðl!ðl� 1Þ!Þ;
�ð!; k; lÞ ¼ � ð!̂klÞ �  ð!̂kl �!� lÞ; (4)

where ðaÞn ¼ �ðaþ nÞ=�ðaÞ is the Pochhammer symbol
and  ðxÞ ¼ d ln�ðxÞ=dx is the digamma function. Note
also that fð!; k; rÞ ¼ fð�!; k; rÞ. Only the fð!; k; rÞ
with k � 0 are regular for r! 0, so the modes we use
below are of the form e�i!tþik�fð!; jkj; rÞ.
We would now like to obtain the most general solution

whose leading asymptotics (� rl�1 as r! 1) contain an
arbitrary source �ð0Þðt; �Þ for the dual operator. This solu-
tion is

�ðt; �; rÞ ¼ 1

4�2

X
k2Z

Z
C
d!

Z
dt̂

Z
d�̂e�i!ðt�t̂Þþikð���̂Þ

��ð0Þðt̂; �̂Þfð!; jkj; rÞ

þX
�

X
k2Z

X1
n¼0

c�nke
�i!�

nk
tþik�gð!nk; jkj; rÞ; (5)

which we now proceed to explain. Clearly, the first term in
(5) has the correct leading behavior, but we should explain
the C representing a contour in the complex ! plane. This
contour is necessary to avoid the poles in
�ð!; k; lÞ�ð!; k; lÞ at

! ¼ !�
nk � �ð2nþ kþ 1þ lÞ; n 2 f0; 1; 2; . . .g:

We are now completely free to specify any contour that
circumvents the poles, for example, the striped contour in
Fig. 3. The difference between two contours is a sum over
the residues:

gð!nk; k; rÞ ¼
I
!nk

d!fð!nk; k; rÞ � r�l�1�ð!nk; k; lÞ

�
�I

!nk

d!�ð!; k; lÞ
�
:

The gð!nk; k; rÞ are the ‘‘normalizable modes.’’ Since they
vanish asymptotically, we can actually freely add them to
the solution � (so not just as residues) without affecting
the fact that ���ð0Þrl�1 for large r. Therefore, the most

general solution includes a sum over these normalizable
modes with arbitrary coefficients c�nk, as appears in (5).

Since a change of contour can be undone by also changing
the c�nk, let us fix the contour to be the solid line in Fig. 3.

This means all the nonuniqueness in the Lorentzian solu-
tion is captured by the c�nk.
For later use, let us present an alternative form of the

solution. Without loss of generality, we can assume that the
initial matching surface S� is at t ¼ 0 and that the sources
are zero in the vicinity of S�. Then, near S�, we can
perform the ! integral by closing the contour and picking
up the poles in fð!; k; rÞ, resulting in

0

ω

FIG. 3. Contours around the poles in the complex ! plane.
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� ¼ 1

4�2

X1
n¼0

X
k2Z

e�i!�
nk
tþik��ð0Þð!�

nk; kÞgð!nk; jkj; rÞ

þX
�

X
k2Z

X1
n¼0

c�nke
�i!�

nk
tþik�gð!nk; jkj; rÞ;

where we Fourier transformed the source. Of course, this is
an expected result; it just represents the completeness of
the modes.

Now consider the solution on the ‘‘initial cap,’’ so on the
space specified by the metric,

ds2 ¼ ðr2 þ 1Þd�2 þ dr2

r2 þ 1
þ r2d�2

with �1< � � 0, so that we have half of Euclidean AdS
space. Had the bulk been the entire Euclidean AdS space,
the Klein-Gordon equation would have a unique regular
solution given boundary data. In particular, with zero
sources the unique regular solution is identically equal to
zero. In our case the sources are zero but we only consider
half of the space, so solutions that would be excluded are
now allowed because they are only singular at the other
half of the space. These regular solutions are precisely the
analytically continued Lorentzian normalizable modes, so
we find solutions when! ¼ !�

nk. Since the solution should

vanish at �! �1, the most general Euclidean solution
contains only negative frequencies,

�ð�;�; rÞ ¼ X
n;k

d�nke
�!�

nk
�þik�gð!nk; jkj; rÞ;

with thus far arbitrary coefficients d�nk.
We can now consider the matching at � ¼ t ¼ 0, which

will fix the initial data. From the continuity �Lð0; �; rÞ ¼
�Eð0; �; rÞ we find, using orthogonality and completeness
of the gð!nk; jkj; rÞ:

�ð0Þð!�
nk; kÞ þ c�nk þ cþnk ¼ d�nk:

Equation (2) yields a relation between conjugate momenta,

� i@t�L ¼ @��E:

Substituting the solutions we find

�!�
nk�ð0Þð!�

nk; kÞ �!�
nkc

�
nk �!þ

nkc
þ
nk ¼ �!�

nkd
�
nk;

so that cþnk ¼ 0. Similarly, the matching to the out state

determines c�nk ¼ 0, and indeed all the freedom in the bulk

solution is fixed. We remark that, had we chosen any other
contour in (4), we would have found nonzero values of
some of the c�nk, effectively throwing us back to the solid

line of Fig. 3.
Finally, the two-point function is obtained from the

r�l�1 term in the asymptotic expansion of (4) (with c�nk ¼
0):

h0jTOðt; �ÞOð0; 0Þj0i ¼ l

4�2i

X
k

Z
C
d!e�i!tþik�

� �ð!; jkj; lÞ�ð!; jkj; lÞ;

with the contour C being the same as for the bulk solution,
thus the standard Feymnan prescription leading to time-
ordered correlators. We emphasize again that C was com-
pletely fixed by the matching to the caps. Integrating over
C is equivalent to integrating over the real axis and shifting
!! !ð1þ i�Þ. The Fourier transform of this expression
then gives

h0jTOðt; �ÞOð0; 0Þj0i ¼ l2=ð2lþ1�Þ
½cosðt� i�tÞ � cosð�Þ�lþ1

:

This is the expected form for a time-ordered two-point
function on a cylinder and the normalization coefficient
can be shown to agree with the standard AdS=CFT nor-
malization of 2-point functions.
Conclusion.—We presented a prescription that relates

in- and out-states of the boundary QFT to initial and final
data for the bulk fields. We discussed in detail the case of a
free bulk scalar field in pure AdS, but the procedure
extends to other contours, fields (including the metric),
asymptotically AdS spacetimes and higher n-point func-
tions in a clear manner, details of which will be presented
in [8]. The prescription allows us to study holographically
QFT dynamics in cases where analytic continuation from
the Euclidean regime does not suffice. It also offers a new
perspective on the holographic encoding of bulk space-
times, since the state or density matrix corresponding to a
given geometry is directly related to the Euclidean parts of
the solution. This may allow us to understand how regions
beyond bulk horizons are ‘‘encoded’’ in the QFT data. We
hope to address this and other intriguing aspects of real-
time gauge/gravity duality in the near future.
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