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We consider a ubiquitous scenario where a fluctuating, semipermeable vesicle is embedded in solution

while enclosing a fixed number of solute particles. The swelling with increasing number of particles or de-

creasing concentration of the outer solution exhibits a continuous phase transition from a fluctuating state

to the maximum-volume configuration, whereupon appreciable pressure difference and surface tension

build up. This criticality is unique to particle-encapsulating vesicles, whose volume and inner pressure

both fluctuate. It implies a universal swelling behavior of such vesicles as they approach their limiting

volume and osmotic lysis.

DOI: 10.1103/PhysRevLett.101.078104 PACS numbers: 87.16.dj, 64.60.Cn, 64.60.F�, 64.60.an

Membrane vesicles are fluctuating closed surfaces of
0:1–10 �m scale, made of a flexible bilayer of amphiphilic
molecules in aqueous solution. Serving as a simple model
of biological compartments (e.g., red blood cells), they
have been one of the most extensively studied soft-matter
systems [1–3]. Numerous works have addressed the elas-
ticity and statistical mechanics of the membrane under
various constraints, such as area and enclosed volume
(e.g., [3–5]), or area and pressure difference across the
membrane [6–8], yielding various shapes and shape trans-
formations. Actual vesicles are always immersed in solu-
tion and thus contain both solvent (water) and solute. Such
biomolecule-encapsulating vesicles are ubiquitous in cell
functions such as signaling and transport into (endocytosis)
and out of (exocytosis) the cell [9]. They are also used in
various applications as microreactors or delivery vehicles
for cosmetics and drugs (liposomes) [10].

The hydrophobic core of the bilayer membrane hinders
permeation of both water and solute molecules. Over suf-
ficiently short time, therefore, the vesicle volume is fixed.
Yet, while the activation barrier for water exchange is of
the order of 20T (T being the thermal energy) [11], the
barriers faced by the solute particles are typically much
higher due to their size and/or charge, resulting in mem-
brane permeabilities which are orders of magnitude lower
[11]. Moreover, water exchange across the membrane can
be tremendously enhanced (indeed, biologically con-
trolled) via aquaporin channels, which lower the barrier
to below 8T [12]. At sufficiently long times, therefore,
most vesicles are found in a wide semipermeable regime,
where water can be considered as exchanged between the
interior and exterior, while the solute remains trapped in-
side. As a result, it has been assumed that the exterior
solution concentration and number of encapsulated par-
ticles determine the vesicle volume in practice [3–5]—the
mean volume adjusts through water permeation so as to
annul the osmotic pressure difference across the mem-
brane. This scenario has been experimentally verified
[13] and utilized to measure membrane permeabilities of

various solutes [11] and create osmotic motors [14].
Volume fluctuations around the osmotically determined
mean value have been considered as well [15,16].
However, at high swelling, as the vesicle approaches its
maximum volume, this volume-adjustment description
must break down, and appreciable pressure difference
and surface tension will begin to build up. Further swelling
eventually leads to pore formation and osmotic lysis
[9,17,18]. The change in swelling behavior, in particular,
whether it is a smooth crossover or a sharp transition, is the
focus of the current Letter.
We describe the vesicle as a closed surface composed of

N molecules and having maximum volume Vmax �
a3N3=2, a being a molecular length comparable to the
membrane thickness. It is assumed that at Vmax the vesicle
has a nonextensive number of configurations. The vesicle
encloses Q solute particles, which do not directly interact
with the surface other than being trapped inside it. The
vesicle is immersed in a solution of fixed concentration and
temperature, which exerts an outer osmotic pressure po on
the membrane. Since solvent molecules are exchanged
between the interior and exterior, the vesicle volume is
not specified and, hence, neither are its inner particle
concentration and pressure. Thus, the partition function
involves integration over all possible volumes,

Z ðT; po; Q;NÞ ¼
Z

dVZvðT; V; NÞZsðT; V;QÞe�poV=T;

(1)

where Zv and Zs are the canonical partition functions of the
vesicle and solute particles, respectively, for a given vol-
ume V. The thermal energy T is hereafter set to unity. For
the solute we write

Zs ¼ e�QfðQ=VÞ; (2)

where f is the canonical free energy per solute molecule.
A key issue for the highly swollen vesicles studied here

is how Zv behaves as V approaches Vmax. It is shown below
that, quite generally,
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ZvðV & VmaxÞ � ðVmax � VÞ�N; (3)

where � is a coefficient of order unity. This result readily
follows from the two requirements, that (i) the vesicle free
energy be extensive in N for V < Vmax, and (ii) the proba-
bility density function of volumes vanish at Vmax. In more
detail, Zv is found by integrating over all surface configu-

rations the factor e�H½R��ðV � V½R�Þ, where V½R� is the
volume of configuration R, and H½R� its energy (includ-
ing, e.g., contributions from bending rigidity and surface
interactions). For V ’ Vmax one can generally represent the
configurations by the amplitudes fung of N normal modes.
(For example, in the case of nearly spherical vesicles these
are spherical harmonics [3,19,20].) One then expands
V½R� ’ Vmax �

P
nCnjunj2. Assuming that H is non-

singular at Vmax, and using the integral representation of

the delta function, we get Zv � e�HðVmaxÞ R d½un�dp�
exp½ipðVmax � V �P

Cnjunj2Þ�. Integration over fung
gives a factor of p�1=2 per mode which, upon integration
over p, yields Eq. (3) with � ¼ 1=2 [21].

Substituting Eqs. (2) and (3) in Eq. (1) while specifying
the solute free energy f, one can perform the integration
over V for given Q, po, and N. In Fig. 1 we present the
resulting mean volume, hVi ¼ �@ lnZ=@po, as a function
ofQ for an ideal solution, fðQ=VÞ ¼ lnðQ=VÞ � 1. AsN is

increased, hVi is seen to approach a discontinuous first
derivative at Qc ¼ poVmax.
We now proceed to investigate this criticality analyti-

cally for a general (nonideal) solution. The partition func-
tion can be rewritten as Z� R

dVe�F, with F ¼
��N lnðVmax � VÞ þQfðQ=VÞ þ poV. Minimizing F
with respect to V and applying a first-order saddle-point
approximation (which is equivalent to a mean-field as-
sumption), we obtain the following equation for hVi:
Q2f0ðQ=hViÞ=hVi � pohVi ¼ �NhVi=ðVmax � hViÞ: (4)

Expansion in Vmax � hVi yields for our order parameter,
M ¼ 1� hVi=Vmax,

M ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� tðqÞ�2 þ 4sgðqÞ

q
� s� tðqÞ�=ð2gðqÞÞ (5)

!N!1ðjtj � tÞ=ð2gÞ; (6)

where q ¼ Q=Vmax is the solute concentration at V ¼
Vmax, tð�Þ ¼ �2f0ð�Þ=po � 1 is the rescaled difference
between the solute pressure at concentration � and the
outer pressure [tð� ¼ qÞ acting as the control parameter

of the transition], s ¼ �N=ðpoVmaxÞ � N�1=2, and gðqÞ ¼
q2½2f0ðqÞ þ qf00ðqÞ�=po > 0 [22].
Equations (5) and (6) describe a phase transition at q ¼

qc which solves the equation tðqcÞ ¼ 0, i.e., for which, if
the volume were equal to Vmax, the inner pressure would
just balance the outer one. The parameter tðqÞ is related to
the actual control parameter,Q or q, via the solute equation
of state. In the ideal-solution example, fðQ=VÞ ¼
lnðQ=VÞ � 1, the critical point is at qc ¼ po (Qc ¼
poVmax), and we have t ¼ Q=Qc � 1 and g ¼ 1. The

transition occurs in the region jtj & � ¼ ð4sgÞ1=2 �
a�3=2p�1=2

o N�1=4, along which M crosses over from finite
values to very small ones,

M ¼
8><
>:
�t=g� N0jtj1 t � ��
�=ð2gÞ � N�1=4jtj0 jtj � �
�2=ð4gtÞ � N�1=2t�1 t � �:

(7)

In the thermodynamic limit, N ! 1, this crossover turns
into a sharp corner [Eq. (6)], i.e., a discontinuity in @M=@t.
From Eq. (5) we find that M follows a scaling law within
the transition region,

M=� ¼ g�1 ~Mðt=�Þ; ~MðxÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
� xÞ=2; (8)

which is verified in Fig. 1 (inset). In addition, we calculate
from Eq. (8) the compressibility, � ¼ @M=@po,

�¼ ðgpoÞ�1 ~�ðt=�Þ; ~�ðxÞ ¼ ð1� x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ=2: (9)

Performing the next-order saddle-point calculation (i.e.,
including fluctuations beyond mean field) yields negligible

corrections to M, of order N�3=2, N�5=4, and N�1, respec-
tively, in the three domains of Eq. (7). Thus, the mean-field
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FIG. 1 (color online). Order parameter as a function of control
parameter for an ideal solution encapsulated in vesicles of
various sizes. Solid curves show the mean-field results
[Eq. (5)], while dotted curves are obtained from numerical
integration of the partition function [Eq. (1)]. Data sets from
top to bottom (bottom to top in the inset) correspond to po ¼ 1,
N ¼ 30 (green); po ¼ 1, N ¼ 103 (blue); po ¼ 5, N ¼ 103

(indigo); po ¼ 1, N ¼ 105 (red); and the N ! 1 limit
[Eq. (6), black]. Only for the smallest vesicle size (N ¼ 30)
are the mean-field and numerical results distinguishable. Inset
shows rescaled data according to Eq. (8), where the uppermost
curve (solid black) is the theoretical scaling function. Values of
po are in units of T=a3; in all data sets � ¼ 1=2 and Vmax ¼
a3N3=2.
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description is accurate, as is also confirmed by numerical
integration of the partition function (Fig. 1).

Equation (4) (upon division by hVi) is just the Laplace
law, balancing the pressure difference across the mem-
brane (left-hand side) with a surface term (right-hand
side). We therefore identify the pressure difference and
surface tension as

�p ¼ ð�N=VmaxÞM�1 � a�3N�1=2M�1;

�� R�p� a�2M�1;
(10)

where R� aN1=2 is the vesicle radius. Thus, �p and �
change from negligible values below the transition to
appreciable ones above it. Specifically, a3�p is of order

N�1=2, N�1=4, and 1, while a2�� 1, N1=4, and N1=2,
below, at, and above the critical point, respectively.

Note that Eqs. (1)–(3), which underlie the entire analy-
sis, contain no microscopic information. The model, there-
fore, is purely thermodynamic, in the sense that any
specific microscopic model for the vesicle and encapsu-
lated solution (so long as the vesicle has a state of maxi-
mum volume and negligible entropy) should lead to the
same results. [For example, inclusion of bending rigidity
will merely change the prefactor in Eq. (3).] The invariance
to the choice of model implies also that the continuous
transition does not necessarily involve a divergent cor-
relation length [23]. We have checked these statements
for the specific example of a nearly spherical envelope of
N nodes and fixed total area 4�R2

0, enclosing an ideal

solution. The vesicle shape is defined in this case by
Rð�;’Þ, the distance of the membrane from the center as
a function of solid angle, whose deviation from R0 can be

decomposed into spherical harmonics, Rð�; ’Þ ¼ R0½1þPlmax

l¼0

P
l
m¼�l ulmYlmð�;’Þ�, where ðlmax þ 1Þ2 ¼ N. Inte-

gration of the resulting partition function over the ampli-
tudes ulm within a saddle-point approximation recovers
Eqs. (5)–(9). The correlation function, hulmulð�mÞi �
ðM=NÞ=½lðlþ 1Þ � 2�, l > 1, exhibits a critical suppres-
sion of amplitude but no divergent correlation length.
Expectably, this fluctuation spectrum is identical to that
of a spherical membrane with surface tension ��M�1, in
accord with Eq. (10).

Equations (8) and (9) characterize the sharpening of the
transition with increasing system size. If we recast them in

the conventional finite-size scaling form [24], M�
R�	=
� ~MðR1=
�

tÞ and �� R�=
� ~�ðR1=
� tÞ, we readily ex-
tract 	 ¼ 1, � ¼ 0, and 
� ¼ 2. The values of 	 and � are
consistent with the linear increase of M below the transi-
tion [Eq. (6) and Fig. 1]. Notwithstanding the absence of a
divergent correlation length, one can use 
� to define a

length scale, �� ajtj�
� , such that the system lies in the
critical domain if R< �. The divergent � does not relate
to correlations but to the competition between surface
degrees of freedom (�N) and three-dimensional ones

(�N3=2). This competition determines the width of the

transition, �� ½N=ðpoVmaxÞ�1=2, making it shrink with
increasing N. Repeating the analysis for a ring in two
dimensions yields a similar mean-field transition with
identical exponents. We are not aware of another transition
whose mean-field limit has the exponents found above
[25].
The phase transition just characterized is a unique fea-

ture of particle-encapsulating vesicles. It is a consequence
of the effective inner pressure being dependent on the
volume (through fðQ=VÞ for fixed Q), while the latter
fluctuates. This leads to pressure difference and surface
tension which are nonanalytic in Q [Eq. (10)] and a con-
sequent breaking of the equivalence between the fixed-
pressure (or fixed-tension) scenario and that of fixed Q.
Indeed, if the enclosed solution is replaced with a given

inner pressure pi (i.e., upon substituting in Eq. (1) Zs ¼
epiV=T), it is straightforward to show that M ¼ �N½ðpi �
poÞVmax��1, in agreement with Eq. (10) [26]. Therefore, in
the case of a given pressure difference (or tension) the
vesicle swells gradually with pi (or �) without criticality.
Furthermore, replacing the particle-number constraint with
a chemical potential [27] is equivalent (via the solute
equation of state) to specifying the inner pressure. Hence,
there is no criticality in the grand-canonical case either,
and the two ensembles are manifestly not equivalent [28].
Another noteworthy limit is that of a pure solvent out-

side the vesicle, po ! 0, where the current analysis yields
Qc ! 0 and � ! 1, i.e., the transition disappears. In this
case the swelling of the vesicle toward its maximum vol-
ume occurs already for much smaller particle numbers Q,
scaling with the area N rather than the volume [28].
In summary, we have found that membrane vesicles,

under rather general conditions, behave critically as the
number of solute particles inside them is increased or,
equivalently, the outer osmotic pressure is decreased. It
should be possible to experimentally observe this phase
transition, e.g., by creating vesicles and subsequently di-
luting the outer solution in a controlled manner, or by using
isotonic solutions of molecules with different membrane
permeabilities [18]. We mention three points relating to
such experiments. First, they should cover such time scales
that the vesicle could be considered permeable to water.
This can be sensitively controlled if water (aquaporin)
channels are incorporated in the membrane, yet common
lipid vesicles are also found in this regime over readily
accessible time scales (�10 s) [13,14,18]. Next we exam-
ine the assumption of a sharply defined maximum volume.
One definition of Vmax would be the volume enclosed by an
unstretchable vesicle of a given area once out-of-plane
fluctuations have completely vanished [29]. This assump-
tion should be relaxed when inplane (stretching) fluctua-
tions become comparable to transverse ones. Since, for a
tense membrane, the mean-square fluctuations of both
modes have the same (quadratic) dependence on wave
number, this crossover will occur simply when the surface
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tension, �� ðT=a2ÞM�1 [Eq. (10)], becomes comparable
to the membrane stretching modulus, which is typically of
order 102 dyne=cm [30]. For a� 1 nm this happens when
M & 10�2, i.e., when the mean volume deviates from Vmax

by less than 1%. Thus, we expect the transition from
appreciable to small values of M, along with the corre-
sponding scaling behavior, to be manifest well before
stretching becomes important. Since lipid membranes
can sustain inplane strains of only a few percent before
rupturing [17], the crossover to stretching-dominated dy-
namics will be shortly followed by vesicle lysis [18]. Third,
because of the weak dependence of the transition width on

N, �� ða3po=TÞ�1=2N�1=4, the observed behavior will
not be very sharp. A typical micron-sized vesicle has about
N � 108 molecules in its membrane, leading, for a 0.1 M
solution, to �� 10�1 only. The criticality could be veri-
fied, nonetheless, by checking data collapse according to
the scaling law, Eq. (8).

Thus, our assumptions concerning permeability, maxi-
mum volume, and number of molecules do not rule out an
experiment aimed at the predicted critical swelling. (The
suppression of small fluctuations near the transition, how-
ever, may be hard to resolve.) More generally, this study
highlights the qualitative difference between semiperme-
able, particle-encapsulating vesicles and those having fixed
volume or pressure. Since most natural and industrial
vesicles belong to this class, their different behavior should
be taken into account, particularly in cases of high swelling
and osmotic lysis.
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