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We prove that a tight-binding ladder network composed of atomic sites with on-site potentials

distributed according to the quasiperiodic Aubry model can exhibit a metal-insulator transition at multiple

values of the Fermi energy. For specific values of the first and second neighbor electron hopping, the result

is obtained exactly. With a more general model, we numerically calculate the two-terminal conductance.

The numerical results corroborate the analytical findings.
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The classic problem of electron localization in low
dimensional quantum systems has remained alive over
the last 50 years, since its proposition in 1958 by
Anderson [1]. It is now well known that in one dimension
(1D) even for arbitrarily weak disorder (almost) all the
one-electron states are exponentially localized [1,2] and
one never encounters mobility edges, that is, energy eigen-
values separating localized (insulating) states from the
extended (conducting) ones, though positional correlations
among the constituent ‘‘atoms’’ have been shown to lead to
some unscattered (extended) states in an otherwise disor-
dered one-dimensional lattice [3–6].

Quasiperiodic lattices, such as a 1D single band Aubry-
Andre (AA) chain [7] have also played their part in the
quest of mobility edges in 1D. In an AA chain of lattice
constant a, the on-site potential described by, �n ¼
� cosðQnaÞ with Q being an irrational multiple of �. An
AA model represents an almost periodic lattice which is
different from a randomly disordered system, and displays
a special kind of ‘‘order’’, called the quasiperiodic order.
The system, however, lacks translational periodicity. In one
dimension with nearest neighbor hopping integral t, and
with a site potential given by �n as above, the amplitude fn
of the wave function at the nth site of the lattice can be
obtained from the eigenvalue equation

½E� � cosðQnaÞ�fn ¼ tðfnþ1 þ fn�1Þ: (1)

When � > 2t all the single particle states are exponentially
localized with Lyapunov exponent lnð�=2tÞ, while � < 2t
makes the states (all of them) extended [7,8]. One gets a
metal-insulator (MI) transition in parameter space, but no
mobility edges in energy exist for this model. A second
important feature of this model is its self duality, which
means that if one makes the transformation [8] from fn to
gm ¼ P1

n¼�1 fne
�imnQa, then the coefficients gm satisfy

½E� 2t cosðQmaÞ�gm ¼ ð�=2Þðgmþ1 þ gm�1Þ. The gm
equation is exactly of the same form as Eq. (1) with the
roles of t and � interchanged. It can be shown [8] that if the
eigenstates given by gm are localized in reciprocal space,

then the eigenstates of Eq. (1) will be extended in real
space, and vice versa. Incidentally, several variants of the
Aubry model have also been examined to detect the sig-
nature of mobility edges even in one dimension [9–11].
In this Letter we investigate the electronic spectrum of

an AA-ladder network built by fixing two identical
AA chains laterally (see Fig. 1). The motivation behind
the present work is twofold. First, we wish to investigate if
the interplay of the quasi-one-dimensional structure of the
network and the AA duality, which is still preserved, leads
to a possibility of an MI transition. If it is true, then a ladder
network such as this, could be used as a switching device,
the design of which is of great concern in the current era of
nanofabrication. Interestingly, research in AA models in
one dimension and its variations has been rekindled re-
cently in the context of potential design of aperiodic opti-
cal lattices [12,13]. Therefore, the question of the existence
of MI transition in a system with ‘‘pure’’ AA potential can
be addressed with a renewed interest. Second, the ladder
networks have recently become extremely important in the
context of understanding the charge transport in double-
stranded DNA [14,15]. Experimental results on DNA
transport report wide ranges of behavior, from almost
insulating [16], semiconducting [17], to even metallic
[18], which can be attributed to many experimental com-
plications, such as the preparation of the sample, sample-
electrode contact, etc. In addition to this, Mrevlishvili [19]
experimentally observed oscillations in the specific heat of
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FIG. 1 (color online). Schematic view of a ladder attached to
two electrodes.
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DNA structures at low temperatures, results that have been
subsequently explained by Moreira et al. [20] considering
a quasiperiodic sequence of the nucleotides. The results of
Ref. [20], compare remarkably well with numerical results
obtained for Ch22 human chromosomes. The helical struc-
ture of the double-stranded DNA is expected to affect the
periodicity of the effective site potentials on the ladder, and
introduce incommensurate periods in the system. In view
of this, the examination of the electronic spectrum of a
ladder network comprising of aperiodically varying site
potentials might throw new light into the behavior of
electrons, both in the context of basic physics and possible
technological applications including DNA devices.

We adopt a tight-binding formalism, incorporate nearest
and next-nearest-neighbor hopping inside a plaquette of
the ladder and show that such a system exhibits a reentrant
MI transition. Most interestingly, for a selected set of the
Hamiltonian parameters we exactly prove the existence of
mobility edges. Let us refer to Fig. 1. The Hamiltonian of
the ladder network is given by,

H ¼ X
n

�nc
y
ncn þ t

X
n

cyncnþ1 þ H:c:; (2)

where

c n ¼ cn;1
cn;2

� �
; �n ¼ �n;1 �

� �n;2

� �
; t¼ tl td

td tl

� �
:

(3)

In the above, cn;j (cyn;j) are the annihilation (creation)

operator at the nth site of the jth ladder, �n;1 ¼ �n;2 ¼
� cosðQnaÞ is the on-site potential at the nth site of the jth
ladder, � is the vertical hopping between the nth sites of the
two ladders, tl is the nearest neighbor hopping integral
between the nth and the (nþ 1)th sites of every arm and
td is the next nearest neighbor hopping within a plaquette
of the ladder (see Fig. 1).
We describe the system in a basis defined by the vector

f n ¼ fn;1
fn;2

� �
; (4)

where, fn;j is the amplitude of the wave function at the nth

site of the jth arm of the ladder (j ¼ 1, 2). In this basis, our
task is to solve the difference equations ðEI� �nÞfn ¼
tðfnþ1 þ fn�1Þ. To show the existence of multiple mobility
edges in such a system in an analytical way, we choose
td ¼ tl, make the duality transformation to the reciprocal
space for each arm of the ladder and arrive at a difference
equation,

½fE� 2tl cosðQmaÞgI� f2tl cosðQmaÞ þ �g�x�gm;j ¼ ð�=2ÞIðgmþ1;j þ gm�1;jÞ; (5)

where, �x is the usual Pauli matrix. We now diagonalize
the �x matrix by a similarity transformation using a matrix
S, and define j�mi ¼ Sjgmi The difference equation (5)
now decouples into

ðEþ �Þ�m;2 ¼ ð�=2Þð�mþ1;2 þ�m�1;2Þ; (6)

½E� �� �cosðQmaÞ��m;1 ¼ ð�=2Þð�mþ1;1 þ�m�1;1Þ:
(7)

Here, �m;1 and �m;2 are the elements of the column vector
�m and� ¼ 4tl. It is interesting to observe that, the Eq. (6)
above corresponds to a perfectly ordered chain with nearest
neighbor hopping integral equal to �=2 in the reciprocal
space. This implies that, for ��� � < E< �� � we
have a gap less continuous spectrum in the reciprocal
space. Equation (7) on the other hand, represents the
familiar single band Aubry model for which all states
are localized or extended if �> �, or, �< � respectively.
We can now extract information about the nature of
eigenfunctions by considering the two Eqs. (6) and (7)
simultaneously.

Case I.—jEþ �j< � and �> �. We focus on the pair
of Eqs. (6) and (7). When E lies within this range, we are
within the ‘‘continuous band’’ of extended states (in the
reciprocal space). This means that the density of states
corresponding to Eq. (6) is nonzero at all energies lying
within this range and therefore�m;2 � 0 irrespective of the

choice of �. Therefore,

S21gm;1 þ S22gm;2 � 0 (8)

for all m in dual space. This implies that,

lim
n!1½S21fn;1 þ S22fn;2� ¼ 0 (9)

in real space. Sij are the elements of the matrix S. If the

average density of states corresponding to Eq. (7) is non-
zero, then Eq. (7) tells us that limm!1�m;1 ¼ 0, as we have
chosen �> � [8]. This implies that,

lim
m!1½S11gm;1 þ S12gm;2� ¼ 0 (10)

in dual space, and,

S11fn;1 þ S12fn;2 � 0 (11)

for all values of n in real space. Now, the density of states
for an Aubry model is nonzero in the immediate neighbor-
hood of E ¼ � (the band center) [8]. We can therefore
definitely say from Eqs. (9) and (11) that, both fn;1 and fn;2
will be nonzero for any arbitrary value of n. This ensures
that all the states for the Aubry ladder will be extended at
the center of the band. However, interesting changes are
observed as one looks away from the band center. It is
known [7,8] that the density of states of an infinite one
band Aubry model is highly fragmented. This means we
shall have zero values of the density of states (i.e., no state
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at all) scattered throughout the spectrum. Whenever the
density of states is zero, we shall have

S11fn;1 þ S12fn;2 ¼ 0 (12)

for all n. Considering Eqs. (9) and (12) together, it becomes
quite clear that both fn;1 and fn;2 have to be equal to zero as
n ! 1 in order that the Eqs. (8) and (11) are simulta-
neously satisfied. This means that the eigenstates are lo-
calized away from the center of the band. We thus have
extended wave functions at the band center flanked by the
exponentially localized states on either side for��� � <
E< �� � and �> �.

It is to be noted that in the true quasiperiodic limit the
spectrum of an Aubry model exhibits more than one sub-
band separated by global gaps. Within each subband one
has a highly fragmented band structure with infinitesimal
energy gaps (for an infinite system). So, in principle,
following the argument given above, one should encounter
an infinite number of mobility edges. However, for realistic
systems electron-electron interactions or the lead-sample
connection will broaden the energy levels and the infini-
tesimal gaps will not persist. Only mobility edges which
reside in the vicinity of the finite gaps separating the
subbands will survive.

Case II.—jEþ �j> � and�> �. In this energy regime
E lies outside the band corresponding to the ordered sys-
tem [Eq. (6)], the corresponding density of states is zero (as
there are no states at all). One then has,

S21fn;1 þ S22fn;2 ¼ 0 (13)

for all n. If, on the other hand, the density of states
corresponding to Eq. (7) is nonzero, then

S11fn;1 þ S12fn;2 � 0 (14)

for all n. Therefore, from Eqs. (13) and (14) we observe
that, fn;1 and fn;2 both remain nonzero for all values of n.
This means, the eigenstates are extended for these values of
energy. Thus, for �> �, the eigenvalue spectrum for the
Aubry ladder, in real space, exhibits the existence of
localized and extended states separated by mobility edges
and a reentrant metal-insulator transition is clearly visible.
One can follow a similar chain of arguments to show that
all states will be localized in real space for �< �. There
are no mobility edges here.

For a more general choice of the Hamiltonian parame-
ters (with tl � td and �n;1 � �n;2), an analytical approach

becomes difficult. We have numerically calculated the
conductance of an Aubry ladder with various sets of pa-
rameters using a Green’s function formalism. Though one
has true quasiperiodicity only in an infinite system, for
which we already have given an analytical proof for the
existence of MI transition (for a special set of parameters),
it is known that even finite systems grown following a
quasiperiodic order are capable of exhibiting the localiza-
tion effects [8–10]. For example, in finite laboratory-grown

Fibonacci multilayers experimental evidence of localiza-
tion of light has already been reported [21]. Therefore,
though for an ideal infinite system several exotic spectral
features may not be unlikely, in our cases of interest, as we
haveworked in the parameter regimewhere the single band
AA model has exponentially localized states only, expect-
ing the localization fingerprints in a finite AA ladder is
quite legitimate. In the present calculation MI transition
and mobility edges are found even when the simplification
in the values of the hopping integrals are not made.
To calculate the conductance, a finite Aubry ladder is

attached to two semi-infinite one-dimensional metallic
electrodes (Fig. 1), described by the standard tight-binding
Hamiltonian and parametrized by constant on-site poten-
tial �0 and nearest-neighbor hopping integral t0. For low
bias voltage and temperature, the conductance g of the
ladder is determined by the Landauer conductance formula
[22] g ¼ ð2e2=hÞT, where the transmission probability T is
given by [22] T ¼ Tr½�SG

r
L�DG

a
L�. �S and �D correspond

to the imaginary parts of the self-energies due to coupling
of the ladder with the two electrodes and GL represents the
Green’s function of the ladder [23–25]. In Fig. 2 we present
the behavior of the conductance for the cases when � ¼ 0,
and tl ¼ td, and the general case for a nonzero �, and tl �
td is shown in Fig. 3. In every case the pictures of the
density of states are superposed to show that we have
eigenstates existing in energy regimes for which the con-
ductance is zero. This speaks of localized eigenstates and
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FIG. 2 (color online). g-E (red color) and �-E (blue color)
curves for a 60-rung ladder. (a) � ¼ 0 and (b) � ¼ 3. Other
parameters are, Q ¼ ð1þ ffiffiffi

5
p Þ=2, td ¼ tl ¼ 3, �0 ¼ 0, t0 ¼ 4,

and � ¼ 4. We have chosen c ¼ e ¼ h ¼ 1.
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the transition from the conducting (high g) to nonconduct-
ing phase is clear.

Before we end, it should be pointed out that though the
results presented in this communication are for zero tem-
perature, they should be valid even for finite temperatures
(�300 K) as the broadening of the energy levels of the
ladder due to its coupling with the electrodes will be much
larger than that of the thermal broadening [22]. The inter-
ladder hopping � will shift the spectra corresponding to
Eqs. (6) and (7) relative to each other, thus making it
possible, in principle, to tune the positions of the mobility
edges. This aspect may be utilized in designing a tailor
made switching device.
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FIG. 3 (color online). g-E (red color) and �-E (blue color)
curves for a general AA-ladder with 60 rungs. Here, � ¼ 3,Q ¼
ð1þ ffiffiffi

5
p Þ=2, td ¼ 1, tl ¼ 2, �0 ¼ 0, t0 ¼ 4, and � ¼ 4. We have

chosen c ¼ e ¼ h ¼ 1.
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