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We present experimental evidence that the room temperature thermal conductivity (�) of individual

multiwalled carbon and boron-nitride nanotubes does not obey Fourier’s empirical law of thermal

conduction. Because of isotopic disorder, �’s of carbon nanotubes and boron-nitride nanotubes show

different length dependence behavior. Moreover, for these systems we find that Fourier’s law is violated

even when the phonon mean free path is much shorter than the sample length.
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In analogy to Ohm’s law for electrical conductors,
Fourier’s law is an empirical rule of heat transfer in solids
which states that the thermal conductance of a material
scales inversely with its length or, equivalently, that the
thermal conductivity is independent of sample length.
Although Fourier’s law is well established for virtually
all thermal conductors that have been experimentally ex-
amined, efforts towards providing a rigorous theoretical
basis for it have failed [1]. Theoretical studies over the past
decade have demonstrated that Fourier’s law is violated for
a variety of one-dimensional systems [2]. Unfortunately,
despite these intriguing models, the validity criteria for
Fourier’s law remain elusive, and a breakdown of
Fourier’s law seems to be commonplace [3]. Various cri-
teria such as a temperature gradient [4], disorder [5], or
anharmonicity [2] are poor predictors for Fourier’s law to
hold, even in one dimension.

An experimental investigation of the validity of
Fourier’s law in one dimension is exceptionally challeng-
ing. The difficulty lies primarily with the technique asso-
ciated with measuring thermal conductivity (�) of one-
dimensional, nanoscale materials, with the added complex-
ity of systematically varying the size of the investigated
object [6,7]. The dearth of relevant experimental data has
restricted the one-dimensional Fourier’s law problem ef-
fective to theoretical investigations, beginning with the
pioneering work of Peierls [8].

Carbon nanotubes (CNTs) and boron-nitride nanotubes
(BNNTs) are one-dimensional materials. � of CNTs has
been demonstrated to be dominated by phonons [9,10],
while for BNNTs it is exclusively due to phonons [11].
Thus, nanotubes are model systems ideally suited for ex-
perimental investigations of the validity of Fourier’s law in
a low dimension. We here report on measurements of
thermal conductivity of CNTs and BNNTs as a function
of sample length. In both cases we find an unmistakable
deviation from Fourier’s law.

Multiwalled CNTs having diameters ranging from 10 to
33 nm were prepared using conventional arc methods [12].
Multiwall BNNTs were synthesized using an adaptation of
a previously reported method, yielding samples with a
typical outer diameter of 30–40 nm and a length of
�10 �m [13]. Individual multiwall tubes were placed on
a custom-designed microscale thermal conductivity test
fixture using a piezo-driven manipulator operated inside
a scanning electron microscopy (SEM). The fixture incor-
porated independently suspended SiNx pads, with inte-
grated Pt film resistors serving as either heaters or
sensors (i.e., thermometers) [14]. The thermal conductance
of a nanotube was determined after supplying power to the
heater and measuring the resulting temperature changes of
the heater and sensor pads. The test fixture was also made
compatible with operation within a high-resolution trans-
mission electron microscope so that the geometrical factors
of the nanotube under study could be precisely determined.
Several options are available to the experimenter in

determining the transport coefficients for a one-
dimensional system with finite contact resistance. In the
traditional method, the sample is mounted at one end, and a
second movable probe is used as a local probe. Although
this method is well suited for diffusive transport, it cannot
determine the transport coefficients if the sample is a
ballistic conductor with unknown contact resistances.
Here we utilize a different kind of sequential multiprobe
method that can establish a sample’s deviation from
Fourier’s law behavior even for nanoscale samples with
possible ballistic conduction. The method also accounts for
finite contact resistances.
The upper part of Fig. 1 outlines the experimental pro-

cedure, in this case for a BNNT. The inset in Fig. 1 shows
the nanotube attached to the test fixture via two roughly
square-shaped contacts; these are formed from (trimethyl)
methylcyclopentadienyl platinum [ðCH3Þ3ðCH3C5H4ÞPt]
inside the SEM. The right contact attaches the nanotube
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to the top of a preformed vertical ‘‘rib’’ (identified with an
arrow) on the right thermal pad; this elevation ensures that
the nanotube is fully suspended along its entire length
between the contacts. The thermal conductance of the
sample spanning the thermal pads is then measured.
Following measurement, an additional thermal contact
post is deposited, again using ðCH3Þ3ðCH3C5H4ÞPt, inward
of the original right-hand contact. This additional contact
post is denoted ‘‘2’’ in the upper part of Fig. 1. The thermal
conductance is again measured. This process is repeated
with a series of additional ðCH3Þ3ðCH3C5H4ÞPt deposi-
tions, as denoted by the numbers in the upper part of
Fig. 1. Each deposition makes a new, additional thermal
contact to the nanotube and reduces the suspended segment
of the nanotube. Although high-resolution transmission
electron microscope images show that there are some
residues of ðCH3Þ3ðCH3C5H4ÞPt deposited along the nano-
tube, control experiments show that the residues contribute
less than 2% of the total thermal conductance.

The analysis of nanotube thermal conductance versus
sample length would be trivial were it not for the finite
contact resistance between the nanotube and the test fixture

thermal pads. The lower part of Fig. 1 shows two thermal
circuit models that we employ to analyze the above con-
tacting sequence. In model A the thermal resistance of the
sample between each contact post is equivalent to a series
of resistors RsðnÞ (n ¼ sequence number) connected to
each other, with contact resistance RcðnÞ representing
each ðCH3Þ3ðCH3C5H4ÞPt deposition connected in parallel
to the RsðnÞ’s. During the analysis, each RsðnÞ and RcðnÞ is
adjusted for the corresponding geometrical factor, i.e.,
Rs ¼ RslðnÞ1�� and RcðnÞ ¼ Rc=lðnÞ, where lðnÞ is the
length of the nth contact. In each sequence, the total
resistance RtotalðnÞ satisfies the following iteration relation:
Rlinkð1Þ ¼ Rcð1Þ;

RlinkðnÞ ¼ RcðnÞ½RsðnÞ þ Rlinkðn� 1Þ�
RsðnÞ þ RcðnÞ þ Rlinkðn� 1Þ ;

RtotalðnÞ ¼ Rs

�
Ls �

Xn
k¼1

lðkÞ
�
1�� þ RlinkðnÞ þ RcðleftÞ;

(1)

where Ls is the sample length before depositing the first
contact post and RcðleftÞ denotes the contact resistance of
the left contact post shown in Fig. 1 [15]. We have also
considered model B, where the contacts are shorted to each
other. Figure 2 shows the normalized thermal resistance

FIG. 2 (color online). Normalized resistance vs normalized
sample length for different CNT and BNNT samples. The result
of a ballistic conductor with RcðnÞ ¼ 0 is shown as the dashed-
dotted line. The result of Fourier’s law with RcðnÞ ¼ 0 is shown
as the dotted line. The (thermal resistance, length) for each
sample are, respectively, normalized to: CNT sample 1: (3:93�
107 K=W, 5:38 �m); CNT sample 2: (3:34� 107 K=W,
3:84 �m); CNT sample 3: (6:24� 107 K=W, 3:73 �m); CNT
sample 4: (5:87� 107 K=W, 5:00 �m); BNNT sample 1:
(2:12� 107 K=W, 7:01 �m); BNNT sample 2: (7:71�
107 K=W, 5:33 �m). The electrical resistance for CNT sample 1
is normalized to 98:2 K�.

FIG. 1. Upper: A SEM image of a thermal conductivity test
fixture with a BNNT (BNNT sample 1) after five sequences of
ðCH3Þ3ðCH3C5H4ÞPt deposition. The numbers denote the nth
deposition. The inset shows the SEM image after the first
ðCH3Þ3ðCH3C5H4ÞPt deposition. The arrow denotes the pre-
formed rib for suspending the BNNT. Lower: Two circuit models
for analyzing the data of BNNT sample 1. RsðnÞ and RcðnÞ
denote the sample resistance and the contact resistance at each
deposition, respectively.
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with respect to normalized sample length for several iso-
topically unmodified CNTs and BNNTs. Notably, when
RcðnÞ ¼ 0, a ballistic conductor yields the dashed-dotted
line in Fig. 2 and lies below the dashed-dotted line when
RcðnÞ> 0. In contrast, when RcðnÞ ¼ 0, Fourier’s law
yields the dotted line in Fig. 2 and generally encompasses
the region below the dotted line when RcðnÞ> 0. Because
the experimental data for CNTs and BNNTs consistently
fall above the dotted line, Fig. 2 clearly demonstrates that
Fourier’s law is violated in nanotubes.

A violation of Fourier’s law can be quantified by pa-
rametrizing the sample thermal conductivity as �� L� (L
is the length of the nanotube; � ¼ 0 corresponds to
Fourier’s law). To evaluate �, we employ a computer
program that searches the parameter space spanned by Rs

and Rc to establish the minimum deviation from the ex-
perimentally determined � value. The deviation (�) is
defined as

� ¼ Xm
n¼1

½RmeaðnÞ � RfitðnÞ�2; (2)

where m is the total sequence number. RmeaðnÞ and RfitðnÞ
are the normalized measured thermal resistance and the
fitting result at each sequence, respectively.

Figures 3(a) and 3(b) show the fitting results using
model A for CNT sample 4 and BNNT sample 2. It is clear

that Fourier’s law (� ¼ 0) provides a poor fit to the ex-
perimental data. The best fit occurs at � ¼ 0:6 for CNT
sample 4 and � ¼ 0:5 for BNNT sample 2, respectively.
From the best fit, we find that the thermal conductances are
2:3� 10�8 and 1:7� 10�8 W=K for CNT sample 4 and
BNNT sample 2, respectively. The contact resistance of the
first ðCH3Þ3ðCH3C5H4ÞPt deposition contributes less than
28% and 25% to the original intrinsic sample resistance of
CNT sample 4 and BNNT sample 2, respectively.
To check the fidelity of the circuit models as applied to

the thermal nanotube system, we have employed a similar
analysis to the concurrently measured electrical resistance
for CNT sample 1 (this is not possible for BNNTs, as they
are electrical insulators). The room temperature electrical
resistance of a multiwalled CNT of the dimensions used
here has been demonstrated to be diffusive [16,17]. The
inset in Fig. 4(a) shows the corresponding variation of �
with respect to� based on model A for electrical resistance
of CNT sample 1. The minimum occurs at � ¼ 0:2. In
contrast, the simultaneous thermal conductance measure-
ment of CNT sample 1 shows the minimum � occurring at
� ¼ 0:8 [Fig. 4(a), main body]. Although the fitting result
for electrical resistance is close to Ohm’s law, it also
suggests that model A might overestimate �. We have
also checked the results from model B; in general,
model B gives a higher � (i.e., a larger deviation from
Fourier’s law) than does model A.
We have repeated the above experiments and analyses

for different BNNT and CNT samples. Generally, we find
that for CNTs the minimum � occurs at � ¼ ð0:6–0:8Þ,

FIG. 3 (color online). (a) Normalized thermal resistance vs
normalized sample length for CNT sample 4 (solid black
circles), best fit assuming � ¼ 0:6 (open blue stars), and best
fit assuming Fourier’s law (open red circles). (b) Normalized
thermal resistance vs normalized sample length for BNNT
sample 2 (solid black diamonds), best fit assuming � ¼ 0:4
(open blue stars), and best fit assuming Fourier’s law (open
red circles).

FIG. 4. Calculated deviation (�) with respected to � for ther-
mal resistance of (a) CNT sample 1 (up triangles) and (b) BNNT
sample 2 (squares). The inset shows � vs � for electrical
resistance of CNT sample 1 (down triangles).
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whereas for BNNTs the minimum � occurs at � ¼
ð0:4–0:6Þ. This difference may reflect the difference in
isotopic disorder between BNNTs and CNTs. For
BNNTs, the natural abundance boron has large isotopic
disorder (19.9% 10B and 80.1% 11B) and affects the value
of � dramatically [11]. Our results are consistent with
theoretical predictions that isotopic disorder does not
change the divergence of � in favor of Fourier’s law but
instead reduces the value of � [18].

Traditionally, the phonon mean free path (lph) is a char-

acteristic length scale beyond which phonons scatter and
lose their phase coherence. In two- or three-dimensional
systems, this definition successfully gives Fourier’s law
when L � lph. However, it has been pointed out that

many one-dimensional models do not obey Fourier’s law
even when the L is much larger than lph [19–22].

Experimentally, the particular one-dimensional effect can
be seen if we employ the relation � ¼ Cvlph to estimate

lph, where C and v are, respectively, the specific heat and

the averaged sound velocity �15 km=s, and we obtain
lph ¼ 20–50 nm, which is much smaller than the length

scale (L ¼ 3:7–7 �m) in which the violation of Fourier’s
law is observed. Unlike Si thin films, such a large discrep-
ancy cannot be explained by phonon dispersion alone [23].
Therefore, we experimentally demonstrate that L< lph is

not a necessary condition for violating Fourier’s law in
one-dimensional systems.

The observed � ¼ ð0:6–0:8Þ on multiwalled CNTs dif-
fers from theoretical predictions on single-walled CNTs of
� ¼ 0:3–0:4 [20,24]. But it should be noted that, since the
theory of multiple contacts connecting to a non-Fourier
conductor has not been established, the analysis for the
circuit models in Fig. 1 is not trivial. Strictly speaking, for a
non-Fourier conductor, Eq. (1) is only approximately cor-
rect for model A when the differences of the contact
resistances are small (such as our experiments). Further
complexities of modeling a three-dimensional heat flow
interfacing with a non-Fourier conductor may introduce
more uncertainties in the above analysis. However, we
emphasize that the simultaneous electrical/thermal mea-
surement on CNT sample 1 strongly supports � to be
nonzero.

In summary, we provide experimental evidence showing
that Fourier’s law is violated in multiwalled CNTs and
BNNTs regardless of whether L � lph. We also show

that a 20% isotopic disorder changes the divergence of
�. The breakdown of Fourier’s law in nanotubes indicates
that thermal transport in one dimension is extraordinary
and can lead to many potential applications [25–27].
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