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The Bethe-Larkin formula for the fast-projectile stopping power is extended to multicomponent
plasmas. The results are to contribute to the correct interpretation of the experimental data, which could
permit us to test existing and future models of thermodynamic, static, and dynamic characteristics of
strongly coupled Coulomb systems.
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Stopping power is a characteristic of primary interest for
different areas of physics such as nuclear physics, con-
densed matter physics, and plasma physics, as it arises
when studying the interaction of charged particles with
matter. In 1930, Bethe derived his seminal formula for
the fast-projectile energy losses assuming that the atoms
of the medium behave as quantum-mechanical oscillators
[1]. Later, Larkin [2] showed that when fast ions permeate
an electron gas, an analogous formula is applicable but
with the mean excitation frequency replaced by the plasma
frequency !p:

 �
dE
dx
’v�vF

4�Z2
pe4�N

mAv2 ln�; (1)

where ln� � ln2mv2=@!p is the quantal Coulomb loga-
rithm, Zpe and v stand for the charge and velocity of the
projectile, respectively, � is the target density, A is the mass
of the target atoms, N is the Avogadro number, vF is the
electron Fermi velocity, and !p � �4�ne

2=m�1=2, m and n
being the electron mass and density, respectively. This
formula is usually employed to determine experimentally
n in a charged particle system. Particularly, its applicability
seems to be more promising in the field of plasma physics
[3–5] for two reasons: First, in an ionized medium the
energy loss is mainly caused by the free electrons, leading
to an enhancement of the stopping power compared to the
cold target [3–5]; second, this technique appears as the
only suitable candidate for the diagnosis of hot and dense
(n * 1019 cm�3) plasmas, because most of the other meth-
ods fail under these conditions [5].

Usually, it is believed that the electronic subsystem of a
plasma provides the main contribution to the stopping
power process, especially for fast projectiles. Our first
aim in this Letter is to show that, in a multicomponent
completely ionized hydrogen plasma with a weakly
damped Langmuir mode of dispersion !L�k�, the plasma
frequency in the Coulomb logarithm of (1) should be
substituted by the long-wavelength limiting value of
!L�k�; !L�0� � !p

��������������
1�H
p

, with H � hei�0�=3 �

�gei�0� � 1�=3, gei�r� being the electron-ion radial distri-
bution function. The generalization to partially ionized
plasmas or plasmas with complex ions and more species
is straightforward. This correction may have further prac-
tical implications, in particular, after the experiments re-
ported in Ref. [4], where it was possible to measure
separately the enhancement of the stopping power of fast
ions due to the increase in the Coulomb logarithm ln�.
Thus, this method will permit us to probe directly strong
coupling effects which are relevant to plasmas within the
high density energy regime. This includes plasmas arising
in astrophysics and space science, planetary interiors, in-
ertial confinement fusion, matter under extreme condi-
tions, metals, and condensed matter plasmas.

Leaving the ionization losses aside, for calculating the
stopping power for a fast-projectile passing through a
Coulomb fluid we will adopt the polarizational picture,
which becomes more accurate as the kinetic energy of
the projectile increases. In 1954, Lindhard obtained an
expression relating the polarizational stopping power
with the medium (longitudinal) dielectric function [6].
This expression can be generalized further by applying
the Fermi golden rule to obtain [7–9]

 �
dE
dx
�

2�Zpe�2

�v2

Z 1
0

dk
k

Z ���k�

���k�
!nB�!�

	 ��Im��1�k;!��d!; (2)

�
�k� � 
kv� @k2=2M, where M is the mass of the
projectile (here we will work with heavy-ion projectiles
M� m), and nB � �1� exp���@!���1, ��1 being the
temperature in energy units. In addition, unmagnetized
Coulomb fluids are considered, and, hence, the dielectric
function effectively depends only on the wave vector
modulus. Expression (2) is valid only if the interaction
between the projectile and the plasma is so weak that it
can be treated as a linear effect and no relativistic effects
need to be taken into account, i.e., when the energy lost by
a projectile is much less than its kinetic energy, which, in
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turn, is assumed to be much smaller than its rest energy
[10].

The literature on the polarizational stopping power is
very extensive. The problem has been analyzed within the
random-phase approximation (RPA) [7] and beyond, in-
troducing an analytic formula for the local field correction
(LFC) factor [11]. In addition, there are also nonlinear
polarization effects [12], which are beyond the scope of
this work. Whereas we assume that the coupling between
the projectile and the target plasma can be treated pertur-
batively, we do not impose any restriction on the value of
the coupling parameter � � �e2=a [a � �4�n=3��1=3

being the Wigner-Seitz radius], with the proviso that the
latter remains in the liquid phase [13]. As said before, here
we will focus on a completely ionized strongly coupled
hydrogen plasma. The modeling of the dielectric properties
of this kind of plasmas constitutes a difficult problem,
because its characteristic lengths, i.e., Wigner-Seitz radius
and Debye radius �D � �4�ne2���1=2, are of the same
order of magnitude (in a strongly coupled plasma � �
a2=3�2

D * 1, which makes mean field theories, such as
the RPA, and perturbative treatments no longer valid),
and, at the same time, its electronic subsystem is
degenerate.

The framework.—Our dielectric formalism is based on
the method of moments [14,15], which allows us to deter-
mine the dielectric function ��k;!� from the first known
frequency moments or sum rules. The sum rules that we
employ are actually the power frequency moments of the
loss function (LF) L�k;!� � �!�1Im��1�k;!� de-
fined as C��k� � ��1

R
1
�1!

�L�k;!�d!, � � 0; 1; . . . .
Because of the parity of the LF, all odd-order frequency
moments vanish. The even-order frequency moments are
determined by the static characteristics of the system. After
a straightforward calculation, one obtains [14–16]:
C0�k� � �1� ��1�k; 0��, C2�k� � !2

p, and C4�k� �
!4
p�1� K�k� �U�k� �H�, with K�k� � �hv2

eik
2 �

@
2k4=�2m�2�=!2

p, hv2
ei being the average squared charac-

teristic velocity of the plasma electrons. The last two
terms in C4 can be expressed in terms of the partial
structure factors Sab�k�, a; b � e; i: U�k� � �2�2n��1	R
1
0 p

2�See�p� � 1�f�p; k�dp, H � �6�2n��1	R
1
0 p

2Sei�p�dp, where we have introduced f�p;k��
5=12�p2=�4k2���k2�p2�2 lnj�p�k�=�p�k�j=�8pk3�.

The Nevanlinna formula of the theory of moments ex-
presses the dielectric function which satisfies the known
sum rules fC2�g

2
��0 [14,17,18]:

 ��1�k; z� � 1�
!2
p�z� q�

z�z2 �!2
2� � q�z

2 �!2
1�
; (3)

where !2
1 � !2

1�k� � C2=C0, !2
2 � !2

2�k� � C4=C2, in
terms of a function q � q�k; z�, which is analytic in the
upper complex half-plane Imz > 0 and has there a positive
imaginary part. It must also satisfy the limiting condition:
�q�k; z�=z� ! 0 as z! 1 for Imz > 0. In an electron

liquid, this Nevanlinna parameter function plays the role
of the dynamic LFC G�k;!�. In particular, the Ichimaru
viscoelastic model expression for G�k;!� is equivalent to
the Nevanlinna function approximated as i=�m, �m being
the effective relaxation time of the Ichimaru model [19]. In
a multicomponent system, the Nevanlinna parameter func-
tion stands for the species’ dynamic LFCs. In general, we
do not have enough phenomenological conditions to de-
termine that function q�k;!�which would lead to the exact
expression for the LF. One might benefit from the Perel’-
Eliashberg (PE) [20] high-frequency asymptotic form [14]
Im��k;!� ��@��1� ’ �4=3�1=4r3=4

s =3�!p=!�9=2, where
rs � ame2=@2 is the Brueckner parameter.

The corrected Bethe-Larkin formula.—Let us choose a
model function q satisfying the conditions mentioned after
the Nevanlinna formula (3) that would permit us to treat the
stopping power calculation analytically. If we put simply
q�k;!� � i0�, then we get the following particular solu-
tion of the moment problem:

 

L�k;!�
�C0�k�

�
!2

2�!
2
1

!2
2

	�!��
!2

1

2!2
2

�	�!�!2��	�!�!2��:

(4)

Physically, Eq. (4) describes an undamped collective exci-
tation mode (Feynman approximation) at !2 with an addi-
tional central peak accounting for hydrodynamic
diffusional processes [21]. The applicability of this expres-
sion is justified provided that the damping of the collective
excitation is small enough, making this mode act as the
main energy transfer channel. Thus we can disregard the
details of the rest of the excitation spectrum. If we intro-
duce expression (4) into the Lindhard formula (2), it im-
mediately reduces to

 �
dE
dx
’v�vF

�Zpe!p�
2

v2 ln
k2

k1
; (5)

where the ‘‘cutoff’’ wave numbers k1 and k2 are such that
the inequality 0<!2�k�< kv is satisfied with v=vF ! 1
and !2�k� understood as the plasma Langmuir mode dis-
persion law !L�k�. For a weakly coupled plasma, the RPA
dispersion law is valid which neglects the correlational
contributions to !L�k�: !L�k� � �!2

p � hv2
eik2 �

@
2k4=�2m�2�1=2. Then, if v is asymptotically large, we

have k1 � !p=v, k2 � 2mv=@, and we recover the
Bethe-Larkin (BL) result [1,2]. Notice that, in the above-
mentioned inequality for!2, we have presumed that kv�
@k2=2M, which is equivalent to disregarding, at most,
terms of the order of m=M. Similar terms were omitted
in the above expressions for the moments C2 and C4, as
well.

To take into account all Coulomb and exchange inter-
actions in the system analytically, we might use for the
electron-electron contribution U�k� its long- and short-
range asymptotic forms U�k! 0� ’ �v2

eek2=!2
p and
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U�k! 1� ’ �hee�0�=3, where v2
ee � �4Eee=�15 nm� is

defined by the plasma electron-electron interaction en-
ergy density Eee of the plasma [9], hee�0� being equal to
the previous expression for U�k� but with the function
f�p; k� replaced by unity. If we interpolate the plasma
mode dispersion law as !L�k� � �!

2
p�1�H� � wk

2 �

@
2k4=�2m�2�1=2, with w � 2hv2

ei � v2
ee, then the cutoff

wave number k1 is modified as k01 � !0p=v, with !0p �
!p

��������������
1�H
p

, for v=vF ! 1, so that the fast-projectile stop-
ping power becomes

 �
dE
dx
’v�vF

�Zpe!p

v

�
2

ln
2mv2

@!p

��������������
1�H
p : (6)

Here the correction H stems from the electron-ion corre-
lation contribution to the moment C4�k� and is also the one
responsible for the upshift in the value of the Langmuir
frequency predicted in the long-wavelength limit for an
electron-ion plasma with an undamped collective mode.
Although the accurate calculation of H under realistic
conditions is a difficult task [22,23], it is possible to find
a simplified analytic expression based on the temperature
Green’s function technique by a regularized summation
over the Matsubara frequencies [14], yielding H �
�4=3�rs

����
�
p

=�2
����
rs
p
� �

���
6
p
� (see also Ref. [24] for an alter-

native approach based on a nontrivial renormalization via
pair correlations in liquid metals). Whereas in a weakly
coupled plasma (�� 1) this correction is negligible, in a
strongly coupled Coulomb system it could be possible to
retrieve directly H [or gei�0�] by fitting Eq. (6) to some
experimental data. For instance, if we take gei�0� � 10
[23] and ln� � 14 [4], then the stopping power obtained
by the BL formula gets modified by�5%, which indicates
to what extent the experimental accuracy needs to be
improved.

The damped collective mode.—The collective mode is
expected to be damped [22]; this implies that one cannot
employ the solution of the moment problem (4) any longer.
Here we will determine, on the basis of the Chebyshev-
Markov and other model-free inequalities, the bounds for
the asymptotic form of the fast-projectile stopping power.
Let us consider the contribution

 S 1 :�
Z k001
k

0
1

0

dk
k

Z ��

��
!2nB�!�L�k;!�d!



Z k001

0

4�2e2

@k3 ���k�dk
Z ��

0
S�k;!�d! (7)

on account of the fluctuation-dissipation theorem
(FDT) [19]. Then, by applying the upper bound ob-
tained in Ref. [25] for the charge-charge static struc-
ture factor of a quantal multicomponent plasma under
the assumption of perfect screening limk!0S�k�=k2 


@!p coth�@!p�=2�=�8�ne2�, we can approximate the pre-

vious integral as S1 & �!p coth�@!p�=2�k001v for k001 

k01 � vF=v.

This contribution should be compared with those stem-
ming from

 S 2 :�
Z k002�k2

k001
k
0
1

dk
k

Z ��

��
!2nB�!�L�k;!�d!

�
Z k2

k01

dk
k

Z kv

0
!2L�k;!�d!: (8)

Clearly, we can find an upper bound for S2 analogous to
expression (6). To determine a lower bound, we might
apply the Chebyshev-Markov inequalities (CMI) [18]. In
particular, if we take the measure d
 � !2Ld!, then

 S 2 �
�!2

p

2

Z k2

k01

dk
k

�
�kv�2 �!2

2

�kv�2 �!2
2

�
: (9)

Since we have assumed that, for all k 2 �k01; k2�, kv >
!2�k�, then, for some � > 1 such that �k01 � vF=v as
v=vF ! 1, we have

 S 2 �
�!2

p

4

Z �k01

k01

dk
k

�
1�

!2
2

�kv�2

�

�
�!2

p

4

�
ln��

�2 � 1

2�2

�
�O

�
v2
F

v2

�
: (10)

Hence, if we want to ensure that the first leading term of the
stopping power asymptote is contained in S2, it is sufficient
to choose the lower cutoff as k001 � v

2
F=v

2, to obtain S1 


�!2
p coth�@!p�=2�vF=v�O�v2

F=v
2�, which becomes

negligible compared to S2 as v=vF ! 1.
The last contribution to the stopping power (2) reads

 S 3 :�
Z 1
k002�k2

dk
k

Z ��

��
!2nB�!�L�k;!�d!: (11)

In particular, if k002 � 2Mv=@ � k2M=m, then

 I 
 S3 
 nB����k002 ��I ; (12)

I �
R
1
k002
dk=k

R
��
��
!2L�k;!�d!. By applying again the

CMI, but now with the measure d� � Ld!, it is possible
to prove that the satisfaction of all three sum rules fC2�g

2
��0

alone does not guarantee the convergence of S3. To this
aim, we may introduce an additional condition on the
decay of the LF in the interval of interest ���; ���.
Precisely, from the inequalities

 �2
�

Z ��

��
d� 


Z ��

��
!2d� 
 �2

�

Z ��

��
d�; (13)

we see that S3 converges if and only if
R
��
��
d� & �kF=k��,

� > 4, which can be achieved by imposing on the distri-
bution ��!� the following Hölder condition:

 j����� ������j 

�!p

��

�


���������� � ��!p

��������
�
; (14)
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with 0< � 
 1, 
 � 3, for k � k002 . Then S3 &

2!2
pMk2=�mk

00
2 �. Therefore, it is feasible to choose an

upper cutoff as k002 � v
2=v2

F to get that S3 


2!2
pMvF=�mv� �O�v2

F=v
2�. A Hölder-type condition

such as (14) can be satisfied in a number of physical
models, namely, in an electron-ion hydrogen plasma,
where the above-mentioned PE asymptote [20] is appli-
cable if one assumes the spatial dispersion to be negligible
for wavelengths much higher than the maximum impact
parameter, which is valid for the range of frequencies and
wave numbers considered for S3. In the case of a uniform
electron gas, the asymptotic expression derived in Ref. [26]
satisfies a similar condition as well, although one needs to
take into account the region of nonanalyticity of the per-
turbative expansion [27].

With the aforementioned conditions, it follows that the
stopping power �dE=dx given in (2) satisfies asymptoti-
cally, as v=vF ! 1,

 

�
vF
v

�
2

&

�
vF

Zpe!p

�
2
�
�
dE
dx

�
&

�
vF
v

�
2

ln
v
vF
:

This theorem provides the bounds for the fast-projectile
asymptotic form leading term. These are based on inequal-
ities which do not depend on the particular details of the
fluctuation spectrum at low and intermediate frequencies.

Conclusions.—In this Letter, we have studied the modi-
fication of the BL expression for the plasma stopping
power due to the presence of an ion component, strong
coupling, and the decay of the Langmuir mode. We have
shown that, for a perfectly defined plasma collective mode
with negligible damping, the above-mentioned expression
is affected by the electron-ion correlation. In addition, we
have derived bounds for the fast-projectile asymptotic, on
the basis of well-established results of the linear response
theory of Coulomb systems, namely, the zero-frequency
sum rule, the f-sum rule, the fourth moment sum rule, and
the FDT, together with the compressibility sum rule. This
general result constitutes a sum rule for the calculation or
numerical estimate of the fast-projectile stopping power
for any model dielectric function satisfying the above-
mentioned conditions, not only in plasma physics but
also in other multicomponent uniform charged particle
systems of condensed matter physics.
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