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The results of the direct numerical simulation of isotropic turbulence of surface gravity waves in the

framework of Hamiltonian equations are presented. For the first time, the simultaneous formation of both

direct and inverse cascades has been observed in the framework of the primordial dynamical equations. At

the same time, a strong long wave background has been developed. It has been shown that the

Kolmogorov spectra obtained are very sensitive to the presence of this condensate. Such a situation

has to be typical for experimental wave tanks, flumes, and small lakes.
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Introduction.—This year is the 50th anniversary of the
famous work by Phillips [1] which was, probably, the first
attempt to give an explanation for powerlike spectra of
surface gravity waves observed in numerous experiments.
In recent works [2,3], the physical explanation given by
Phillips has been corrected. Within less than ten years of
the publication of Phillips’ paper, the statistical theory of
surface waves was founded: Hasselmann derived the ki-
netic equation for waves [4], and Zakharov created the
theory of wave (or weak) turbulence [5] which describes
the solutions of this equation. Stationary Kolmogorov so-
lutions of the kinetic equation corresponding to a flux of
energy from large to small scales (direct cascade) and a
flux of wave action (wave number) from small to large
scales (inverse cascade) were found [5,6]. This opened a
way for the creation of an effective tool for wave forecast-
ing. The conjectured assumptions with which the theory of
weak turbulence was derived include Gaussian statistics
for the wave field and the prevalence of resonant interac-
tions [5]. These assumptions are subject to confirmation.

Experiments in the open sea and on the Great Lakes gave
temporal and space spectra consistent with the theory [7–
12]. Most of these experiments were performed with wind
pumping, which is broad in spectrum. Narrow in spectrum
pumping can be realized in wave tanks or flumes. The
results obtained on such state-of-the-art devices frequently
contradict predictions of the theory of wave turbulence. For
example, in the recent experiments of Refs. [13,14], the
observed spectra changed slope with variation of steepness
and pumping force.

Perhaps the most promising way to check the conjec-
tures of the wave turbulence theory is via numerical ex-
periment. In the case of direct numerical simulation, we
have the highest possible control of the parameters of
experiments and can access all information about the
wave field. This wealth of data is available at the cost of
enormous computational complexity. The rapid growth of
computational power and development of efficient compu-
tational algorithms has allowed direct numerical simula-
tion of the surface gravity waves, starting from the
simulations of swell evolution [15–20] to isotropic turbu-

lence simulation [21–24]. There is hope that this approach
together with confirmation of the conjectures of weak
turbulent theory will allow us to explain phenomena ob-
served in experimental wave tanks.
The theory of the wave turbulence is still under develop-

ment. To close the circle, the recent paper by Newell and
Zakharov [3] gave a second life to the Phillips spectrum,
although from a completely different point of view. The
Phillips spectrum is considered to be a solution which gives
a balance of the transfer of energy due to nonlinear wave
interaction and transfer due to intermittent events such as
wave breaking and whitecapping.
This Letter was inspired by several recent papers. In the

first one [24], the numerical simulation of isotropic turbu-
lence with observed formation of an inverse cascade was
performed in the framework of the Zakharov equations [5].
A little bit later, a group of authors [25] during simulation
of 2D hydrodynamics observed the formation of large scale
structure due to Kraichnan’s inverse cascade and explored
its influence on the system. Influence of the condensate on
turbulence in plasma was simulated recently in Ref. [26].
Approximately at the same time, a state-of-the-art surface
wave experiment was performed [14]. The observed spec-
tra differed from the theory of wave turbulence.
In this Letter, the results of a direct numerical simulation

of isotropic turbulence of surface gravity waves in the
framework of Hamiltonian equations are reported. For
the first time, the formation of both direct and inverse
cascades was observed in the framework of the primordial
dynamical equations. At the same time, a strong long wave
background was developed. This phenomenon of ‘‘con-
densation’’ [27] of waves (following the analogy with
Bose-Einstein condensation in condensed matter physics)
was predicted by the theory of weak turbulence. It was
shown that the Kolmogorov spectra obtained are very
sensitive to the presence of the condensate. Such a situation
has to be typical for experimental wave tanks, flumes, and
small lakes. These results can be considered as the first
observation of generalized Phillips spectra introduced in
Ref. [3] and explain some deviations from the wave turbu-
lence theory in recent wave tank experiments.
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Theoretical background.—We consider a potential flow
of ideal incompressible fluid. The system is described in
terms of weakly nonlinear equations [5,22] for surface
elevation �ð ~r; tÞ and velocity potential at the surface

 ð ~r; tÞ [~r ¼ ðx; yÞ������!
]

_� ¼ k̂ � ½rð�r Þ� � k̂½�k̂ � þ k̂ð�k̂½�k̂ �Þ
þ 1

2�½�2k̂ � þ 1
2k̂½�2� � þ F̂�1½�k�k�;

_ ¼ �g�� 1
2½ðr Þ2 � ðk̂ Þ2� � ½k̂ �k̂½�k̂ �

� ½�k̂ �� � F̂�1½�k k� þ F̂�1½P~k�:

(1)

Here the dot means time derivative, � is the Laplace

operator, k̂ is a linear integral operator (k̂ ¼ ffiffiffiffiffiffiffiffi��
p

), F̂�1

is an inverse Fourier transform, and �k is a dissipation rate
(according to recent work [28], it has to be included in both
equations), which corresponds to viscosity on small scales
and, if needed, ‘‘artificial’’ damping on large scales. P~k is

the driving term which simulates pumping on large scales
(for example, due to wind). In the k space, supports of �k
and P~k are separated by the inertial interval, where the

Kolmogorov-type solution can be recognized.
In the case of statistical description of the wave field, the

Hasselmann kinetic equation [4] for the distribution of the
wave action nðk; tÞ ¼ hja ~kðtÞj2i is used. Here

a ~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!k=ð2kÞ
q

�~k þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=ð2!kÞ
q

 ~k (2)

are complex normal variables. For gravity waves, !k ¼
ffiffiffiffiffiffi

gk
p

. From the theory of weak turbulence [5,6], besides the
equipartions (Rayleigh-Jeans) spectrum, we know two sta-
tionary solutions of the kinetic equation in the case of four-
wave interaction:

nð1Þk ¼ C1P
1=3k�ð2�=3Þ�d;

nð2Þk ¼ C2Q
1=3k�½ð2���Þ=3��d:

(3)

For surface gravity waves, the coefficient of homogeneity
of the nonlinear interaction matrix element � ¼ 3, the
power of the dispersion law � ¼ 1=2, and the dimension
of the surface d ¼ 2. As a result, we get

nð1Þk ¼ C1P
1=3k�4; nð2Þk ¼ C2Q

1=3k�23=6: (4)

The first solution nð1Þk describes the direct cascade of en-

ergy, and the second solution nð2Þk describes the inverse

cascade of action.
Numerical simulation.—We simulated the primordial

dynamical equations (1) in a periodic spatial domain 2��
2�. The main part of the simulations was performed on a
grid consisting of 1024� 1024 nodes. Also, we performed
a long time simulation on a 256� 256 grid. The numerical
code used was verified in Refs. [18–22,29]. Gravity accel-
eration was g ¼ 1. The pseudoviscous damping coefficient
had the following form:

�k ¼
�

�0ðk� kdÞ2;
0 if k � kd;

(5)

where kd ¼ 256 and �0;1024 ¼ 2:7� 104 for the 1024�
1024 grid and kd ¼ 64 and �0;256 ¼ 2:4� 102 for the

smaller 256� 256 grid. Pumping was an isotropic driving
force narrow in the wave number space with a random
phase:

P~k ¼ fke
iR ~kðtÞ;

fk ¼
8

<

:

4F0
ðk�kp1Þðkp2�kÞ

ðkp2�kp1Þ2 ;

0 if k < kp1 or k > kp2;
(6)

here kp1 ¼ 28, kp2 ¼ 32, and F0 ¼ 1:5� 10�5; R~kðtÞ was
a uniformly distributed random number in the interval

ð0; 2�� for each ~k and t. The initial condition was low
amplitude noise in all harmonics. Time steps were
�t1024 ¼ 6:7� 10�4 and �t256 ¼ 5:0� 10�3. We used
Fourier series in the following form:

F̂½�~r�¼ 1

ð2�Þ2
ZZ 2�

0
�~re

i ~k ~rd2r; F̂�1½�~k�¼
X

~k

� ~ke
�i ~k ~r:

As results of the simulation, we observed the formation
of both direct and inverse cascades (Fig. 1, solid line),
although exponents of powerlike spectra were different
from weak turbulent solutions (4). It is important to note
that development of the inverse cascade spectrum was
arrested by the discreteness of the wave number grid in
agreement with Refs. [18,29–31]. After that, a large scale
condensate started to form. As one can see, the value of
wave action jakj2 at the condensate region is more than an
order of magnitude larger than for the closest harmonic of
the inverse cascade. The dynamics of large scales became
extremely slow after this point. We managed to achieve a
downshift of the condensate peak by one step of the wave
number grid during a long time simulation on a small grid
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FIG. 1. Spectra hjakj2i. With a condensate on the 1024� 1024
grid (solid line); on the 256� 256 grid with a more developed
condensate (dashed line); without a condensate on the 1024�
1024 grid (dotted line).
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(256� 256) (Fig. 1, dashed line). As one can see, we
observed elongation of the inverse cascade interval without
a significant change of the slope. Unfortunately, the inertial
interval for the inverse cascade is too short to exclude the
possible influence of pumping and a condensate. We can
try to estimate the exponent by looking at the compensated
spectra on a log-log scale (Fig. 2). The observed spectrum
�k�3:5 is close to a weak turbulence solution (4). The
slightly lower exponent could be explained by weakening
of resonant nonlinear interactions on the coarse wave
number grid, which effectively decreases the homogeneity
coefficient � in expression (3). For direct cascade spectra,
we also used a log-log scale. Results are present in Fig. 3
(left). Formally, in this case we have quite a long inertial
interval 32< k < 256, but in reality damping has an influ-
ence on the spectrum approximately up to k ’ 180. Still, in
this case we have more than half of a decade. The theory of
weak turbulence gives us dependence �k�4 (3), known as
the Kolmogorov-Zakharov spectrum. Nevertheless, one

can see that we observe k�9=2, known as the Phillips
[1,3] spectrum. So we need to understand, what is the
reason for this different spectrum slope? What changes
weak turbulent theory in this case?

To answer these questions, let us compare our situation
with previous works on decaying [16,19,20] or isotropic
[21–23] turbulence. Immediately, we have an answer: the
condensate and the inverse cascade spectrum. The inverse
cascade’s part of the spectrum is described by the theory of

weak turbulence, so let us concentrate on the strong long
(k ’ 5) wave influence on much shorter waves (32< k<
180), corresponding to the direct cascade. We suppressed
the condensate by including ‘‘artificial’’ dissipation on
large scales (k < 10). The resulting spectrum is given in
Fig. 1 (dotted line). The compensated spectrum for direct
cascade is given in Fig. 3 (right). As one can see, the
exponent of the spectrum changed and is now closer to
the results of weak turbulent theory. The small difference
may be a result of the influence of the left edge of the
inverse cascade, which can play the role of the condensate
for short scales corresponding to the direct cascade.
A qualitative explanation of the condensate’s influence

on the short waves could be the following: Let us consider
a propagating wave with some given slope at its front; a
much longer wave can be treated as the presence of a
strong background flow. If the direction of the flow is
opposite to the direction of the wave’s propagation, the
slope of the wave’s front will increase. This is what we see

in our simulations. The average steepness � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hj ~r�j2i
q

has changed: With the condensate �c ’ 0:14, and without
the condensate �nc ’ 0:12. A more detailed picture is
given by probability distribution functions (PDFs) for sur-
face slopes (Fig. 4; also see [32]). Although the middles of
the distributions are well described as Gaussians (which is
one of the assumptions of the weak turbulence theory), we
have significant non-Gaussian tails, and, what is more
important, the widths of the PDFs are different. This means
that, in the presence of the condensate, steeper waves are
more probable. In nature, this will result in stronger
‘‘whitecapping’’: formation of a white foam cap on the
crest of the wave causing additional transport of energy to
the small dissipative scale. In the framework of our model,
such micro-wavebreaking is impossible. Dissipation in the
system prevents the formation of strong spectrum tails
corresponding to the formation of discontinuities on the
surface. Nevertheless, the mechanism is quite similar:
Higher steepness means stronger nonlinearity in our sys-
tem. In this case, for harmonics close enough to the dis-
sipation region, the generation of second and third
harmonics acts as a fast and effective additional process
of energy transport to the dissipative scales. Processes
corresponding to multiple harmonics generation are non-
resonant, and they are neglected in the theory of wave
turbulence. Also, it explains why in the experiment in the
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FIG. 2. Compensated inverse cascade spectra Chjakj2iks.
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FIG. 3. Compensated direct cascade
spectra Chjakj2iks with (left) and without
(right) a condensate.
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framework of Zakharov’s equations [24] spectra were
nearly those of weak turbulence. Zakharov’s equations
take into account only resonant interactions and do not
describe multiple harmonic generation. We can see that
catastrophic events, such as the formation of sharp crests,
which cannot be described in the statistical framework of
the kinetic equation, can significantly affect the physics in
the system. The wave kinetic equation can be augmented
by an additional dissipation term to simulate this dissipa-
tion. As was shown in recent open field [33] and numerical
[19] experiments, whitecapping dissipation is a phenome-
non similar to a second-order phase transition, so even such
a moderate change of the average steepness as we observed
can cause significant altering of the energy transfer mecha-
nism. Our results in the presence of a condensate support a
conjecture [3] that the Phillips spectrum corresponds to a
physical situation when a balance between nonlinear trans-
port terms and intermittent dissipation takes place.

Conclusion.—In this Letter, the author presented results
of the first direct numerical simulation of a direct cascade
in the presence of an inverse cascade and a condensate. The
importance of the condensate as a factor which increases
average steepness and stimulates additional intermittent
dissipation is demonstrated. A qualitative explanation of
the observed spectra is given. The quantitative explanation
is a subject of further investigations, because as the first
step we need to create a comprehensive theory of white-
capping, which includes analysis of the fully nonlinear
equations. One can use the results presented to explain
observed differences in spectra in open sea and in water
tank experiments.

The author thanks V. E. Zakharov, V. V. Lebedev, and
I. V. Kolokolov for fruitful discussions. This work was
partially supported by RFBR Grant No. 06-01-00665-a,
the Program ‘‘Fundamental problems of nonlinear dynam-
ics’’ from the RAS Presidium, and ‘‘Leading Scientific

Schools of Russia’’ Grant No. NSh-7550.2006.2. The au-
thor also thanks the creators of the open-source fast Fourier
transform library FFTW [34].

*kao@itp.ac.ru
[1] O.M. Phillips, J. Fluid Mech. 4, 426 (1958).
[2] E. A. Kuznetsov, JETP Lett. 80, 83 (2004).
[3] A. C. Newell and V. E. Zakharov, Phys. Lett. A 372, 4230

(2008).
[4] K. Hasselmann, J. Fluid Mech. 12, 481 (1962).
[5] V. E. Zakharov, V. S. Lvov, and G. Falkovich, Kolmogorov

Spectra of Turbulence I (Springer-Verlag, Berlin, 1992).
[6] V. E. Zakharov and N.N. Filonenko, Sov. Phys. Dokl. 11,

881 (1967).
[7] Y. Toba, J. Oceanogr. Soc. Jpn. 29, 209 (1973).
[8] M.A. Donelan, J. Hamilton, and W.H. Hui, Phil. Trans. R.

Soc. A 315, 509 (1985).
[9] P. A. Hwang et al., J. Phys. Oceanogr. 30, 2753 (2000).
[10] S. I. Badulin et al., Nonlin. Proc. Geophys. 12, 891 (2005).
[11] V. E. Zakharov, Nonlin. Proc. Geophys. 12, 1011 (2005).
[12] S. I. Badulin et al., J. Fluid Mech. 591, 339 (2007).
[13] E. Falcon, S. Fauve, and C. Laroche, Phys. Rev. Lett. 98,

154501 (2007).
[14] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Phys.

Rev. Lett. 99, 014501 (2007).
[15] M. Tanaka, J. Fluid Mech. 444, 199 (2001).
[16] M. Onorato et al., Phys. Rev. Lett. 89, 144501 (2002).
[17] N. Yokoyama, J. Fluid Mech. 501, 169 (2004).
[18] V. E. Zakharov et al., JETP Lett. 82, 487 (2005).
[19] V. E. Zakharov et al., Phys. Rev. Lett. 99, 164501 (2007).
[20] A. O. Korotkevich et al., Eur. J. Mech. B, Fluids 27, 361

(2008).
[21] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov,

JETP Lett. 77, 546 (2003).
[22] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov,

Phys. Rev. Lett. 92, 134501 (2004).
[23] Yu. Lvov, S. V. Nazarenko, and B. Pokorni, Physica

(Amsterdam) 218D, 24 (2006).
[24] S. Y. Annenkov and V. I. Shrira, Phys. Rev. Lett. 96,

204501 (2006).
[25] M. Chertkov et al., Phys. Rev. Lett. 99, 084501 (2007).
[26] M.G. Shats et al., Phys. Rev. Lett. 99, 164502 (2007).
[27] A. Dyachenko and G. Falkovich, Phys. Rev. E 54, 5095

(1996).
[28] F. Dias, A. I. Dyachenko, and V. E. Zakharov, Phys. Lett.

A 372, 1297 (2008).
[29] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov,

JETP Lett. 77, 477 (2003).
[30] S. V. Nazarenko, J. Stat. Mech. (2006) L02002.
[31] E. Kartashova, S. Nazarenko, and O. Rudenko, Phys.

Rev. E 78, 016304 (2008).
[32] A. O. Korotkevich, arXiv:0805.0445.
[33] M. L. Banner, A.V. Babanin, and I. R. Young, J. Phys.

Oceanogr. 30, 3145 (2000).
[34] http://fftw.org; M. Frigo and S.G. Johnson, Proc. IEEE 93,

216 (2005).

10-4

10-3

10-2

10-1

100

101

102

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

P
D

F

∇y η

PDF of ∇y η with condensate
PDF of ∇y η without condensate

FIG. 4. PDFs of ~ry� with (solid line) and without (dashed
line) a condensate.

PRL 101, 074504 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

15 AUGUST 2008

074504-4


