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We show how to map a given n-qubit target Hamiltonian with bounded-strength k-body interactions

onto a simulator Hamiltonian with two-body interactions, such that the ground-state energy of the target

and the simulator Hamiltonians are the same up to an extensive error Oð�nÞ for arbitrary small �. The

strength of the interactions in the simulator Hamiltonian depends on � and k but does not depend on n. We

accomplish this reduction using a new way of deriving an effective low-energy Hamiltonian which relies

on the Schrieffer-Wolff transformation of many-body physics.
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A variety of theoretical models studied in condensed
matter physics and quantum computation theory deals
with ground states of spin Hamiltonians involving many-
body interactions, i.e., interactions affecting three or more
spins at a time. For example, quantum loop models [1]
describing topological quantum order require Hamilton-
ians with four-spin interactions. The 2D cluster state used
as a resource for the measurement-based quantum compu-
tation can be represented as the ground state of a Hamil-
tonian with five-spin interactions [2]. Another group of
examples includes Hamiltonians for adiabatic quantum
computation [3] and constructions of quantum-computa-
tionally-hard Hamiltonians [4–6] which rely on the map-
ping between quantum circuits and Hamiltonians proposed
by Kitaev [4].

Given this multitude of interesting models, an important
question is whether it is possible to design realistic quan-
tum Hamiltonians with only two-spin interactions whose
ground-state properties (such as the ground-state energy,
2-point correlation functions, spectral gap above the
ground state, etc.) simulate one of the more complicated
Hamiltonians with multispin interactions. Outstanding re-
cent examples of using perturbative techniques for engi-
neering interesting Hamiltonians are Kitaev’s honeycomb
lattice model [7], or the use of perturbation theory in
deriving effective Hamiltonians for cold atoms or mole-
cules in optical lattices (see, e.g., [8]). A demonstration of
how such simulations can be achieved rigorously is due to
Kempe, Kitaev, and Regev [5] who developed a technique
known as perturbation theory gadgets (PTGs).

While in theoretical physics perturbation theory is used
to derive an effective low-energy Hamiltonian starting
from the ‘‘full’’ Hamiltonian (including high-energy de-
grees of freedom), PTGs use the perturbation theory in the
reverse direction. One starts from a target Hamiltonian
Htarget chosen for some interesting ground-state property.

Then a high-energy simulator Hamiltonian H is to be
designed such that Htarget can be obtained from H by

perturbation theory as a low-energy effective Hamilton-

ian. The main objective of PTGs is to make the simulator
Hamiltonian H as simple and realistic as possible while
retaining the interesting ground-state properties of Htarget.

For example, the PTGs have been used in [9] to prove
universality of quantum adiabatic computation with local
two-body Hamiltonians on a 2D square lattice. For more
recent developments, see [10].
Although PTGs are a flexible and powerful technique, it

has a major shortcoming which we will address in this
Letter. This shortcoming is the unphysical scaling of pa-
rameters of the simulator Hamiltonian, such as the norm of
spin-spin interactions growing polynomially with the sys-
tem size n. Technically this unphysical scaling arises from
the well-known convergence criterion for perturbative se-
ries: the norm of a perturbation kVk must be small com-
pared to the spectral gap � of the unperturbed Hamilton-
ian. The convergence criterion forces � to scale with
system size n, since kVk typically scales with n; this is
what has been done in [5,9,10].
If the applicability of perturbation theory were limited

by convergence of the perturbative series, its common use
in physics would be unwarranted. The lack of convergence
for quantum electrodynamics was argued on physical
grounds by Dyson [11]. There is a widespread belief that
the general perturbative series for quantum field theory and
many-body physics do not converge but are to be viewed as
an asymptotic series, meaning that their lowest-order terms
are a good approximation to the quantity of interest while
inclusion of higher-order terms may actually give a worse
result (see, e.g., [12]).
In this Letter we make these beliefs more rigorous by

developing a formalism that justifies application of pertur-
bation theory in the regime kVk � �. This formalism is
applicable to many-body Hamiltonians that possess certain
locality properties. A Hamiltonian H describing a system
of n qubits will be called ‘‘k local’’ if and only if it is
represented as a sum of local interactions H ¼ P

iHi such
that each operator Hi acts on some subset of k or less
qubits. Throughout this Letter we assume that k is a
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constant independent of n. The interaction strength of a
k-local Hamiltonian is defined as the largest norm of the
local interactions, J ¼ maxikHik. In addition, the Hamil-
tonians in this Letter will have the important property that,
for a growing system size, the number of interactions in
which any one-qubit participates does not grow but stays
constant. For convenience we shall refer to this condition
as a bounded degree. It is generically fulfilled for Hamil-
tonians with short-range interactions studied in physics. An
example is the standard (2-local) Heisenberg Hamiltonian
on a lattice H ¼ �P

i;jJðrijÞðXiXj þ YiYj þ ZiZjÞ; the

fact that the coupling JðrijÞ is bounded range, Jðrij > rÞ ¼
0, ensures that each spin is acted upon by a constant
number of terms. The following simulation theorem is
the main result of this Letter.

Theorem 1.—Let Htarget be a k-local Hamiltonian acting

on n qubits with interaction strength J and bounded degree.
For any fixed precision � one can efficiently construct a 2-
local simulator Hamiltonian H acting on OðnÞ qubits with
interaction strength OðJÞ such that the ground-state energy
of H approximates the ground-state energy of Htarget with

an absolute error at most �Jn.
Theorem 1 eliminates the essential shortcoming of the

earlier PTG constructions [5,9,10] mentioned above,
namely, the unphysical scaling of the interaction strength
in the simulator Hamiltonian H. In our construction the
interaction strength ofH is bounded by a constant (depend-
ing only on k, �, and J) which makes it more physical and,
in principle, implementable in a lab. The price we pay for
this improvement is that we are able to reproduce the
ground-state energy only up to an extensive error �Jn.
For all realistic physical Hamiltonians, the ground-state
energy itself is generically proportional to nJ, and thus the
relative error can be made arbitrarily small. Note that this
price, i.e., the presence of an extensive simulation error, is
not a function of what perturbative expansion or what
perturbation gadgets one uses, but is a generic feature of
perturbation theory in the regimewhen kVk � �. This can
be easily understood by considering an example of n
disconnected systems, each of which is individually ana-
lyzed using perturbation theory. The smallest eigenvalue of
the total system will pick up the error in each individual
perturbative expansion and hence will beOð�nÞ, where � is
the perturbation parameter.

Techniques.—Let us sketch the proof of the theorem.
The simulator Hamiltonian H will act on a Hilbert space
describing two species of qubits: n system qubits that are
the qubits of the target Hamiltonian, and OðnÞ mediator
qubits that mediate interactions between system qubits.
The simulator H is constructed using the perturbation
theory gadgets introduced in [9]. ‘‘Gadget’’ is a technical
term used broadly in theoretical computer science; in the
present application, a gadget is simply a mediator qubit,
and a Hamiltonian coupling the mediator qubit with some
small subset of system qubits. For every mediator qubit u

we define a projector onto its low-energy subspace Pu ¼
j0ih0ju and its high-energy subspaceQu¼j1ih1ju. The pur-
pose of a gadget is to simulate some particular k-spin in-
teraction Hu

target in the decomposition Htarget ¼
P

uH
u
targetþ

Helse. Here Helse are additional terms in the target
Hamiltonian that we do not wish to treat using perturbation
theory (since they are already 2 local, for example).
The simulation is achieved by applying perturbation

theory to each gadget individually. A gadget’s simulator
Hamiltonian is Hu ¼ Hu

0 þ Vu, where Hu
0 ¼ �Qu penal-

izes the mediator qubit for being in the state j1i, and Vu is a
perturbation. With the proper choice of Vu the effective
Hamiltonian on the low-energy subspace, in which the
mediator qubit u is in the state j0i, approximates Hu

target

with an error �. Furthermore, this effective Hamiltonian
can be obtained from Hu via an approximate Schrieffer-
Wolff transformation—a unitary transformation eS

u
that

brings the Hamiltonian Hu into a block-diagonal form
(up to a small error); that is, PueS

u
Hue�SuQu ¼ Oð�JÞ

and PueS
u
Hue�SuPu ¼ Hu

target þOð�JÞ. The transforma-

tion eS
u
is generated by some anti-Hermitian operator Su

having block-off-diagonal form; i.e., PuSuPu ¼
QuSuQu ¼ 0. (The Schrieffer-Wolff transformation pro-
posed originally in [13] refers to a particular perturbative
method of deriving a low-energy effective Hamiltonian.)
By combining the local gadgets together, we get as a

candidate for the simulator Hamiltonian H ¼ H0 þ V þ
Helse, with H0 ¼

P
uH

u
0 and V ¼ P

uV
u. Let �ðHÞ and

�ðHtargetÞ be the ground-state energy of H and Htarget,

respectively. We prove that �ðHÞ approximates �ðHtargetÞ
with a small extensive error by constructing a global
unitary transformation eS mapping H to Htarget (with a

small extensive error); that is, Htarget ¼ PeSHe�SPþ
Oð�nJÞ, where P ¼ N

uP
u projects onto the subspace in

which every mediator qubit is in the state j0i. Given such a
transformation one immediately gets an upper bound
�ðHÞ ¼ �ðeSHe�SÞ � �ðPeSHe�SPÞ ¼ �ðHtargetÞ þ
Oð�nJÞ. Here we have taken into account that restricting a
Hamiltonian on a subspace can only increase its ground-
state energy [14]. Making a natural choice S ¼ P

uS
u we

prove that PeSHe�SP contains the desired term Htarget and

some cross-gadget terms where Su acts on Hv
0 þ Vv with

u � v. Using the ‘‘independence’’ properties of the gadg-
ets, the block-off diagonality of Su, and Lemmas 1 and 2
stated below, we are able to show that the contribution of
these cross-gadget terms is small enough to be absorbed
into the error term Oðn�JÞ (see Sec. IIb).
In order to prove a matching lower bound, choose any

gadget u and consider the transformed Hamiltonian ~Hu ¼
eS

u
Hue�Su , where Hu ¼ Hu

0 þ Vu. We prove an operator

inequality ~Hu � Iu �Hu
target þOð�JÞ. Here Iu is the iden-

tity operator acting on the mediator qubit u, and Oð�JÞ
stands for some operator with norm Oð�JÞ. Intuitively one
should expect this inequality to be true since the P block of
~Hu approximates Hu

target with an error Oð�JÞ, the Q block
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of ~Hu contains a large energy penalty �, and the off-
diagonal blocks P ~HuQ are small by the definition of the
Schrieffer-Wolff transformation. Using the unitarity of eS

u

and the smallness of Su, we transform the above inequality
into Hu � Iu �Hu

target þOð�JÞ, which implies H �
I �Htarget þOðn�JÞ and thus gives �ðHÞ � �ðHtargetÞ þ
Oðn�JÞ. These arguments are fleshed out in Sec. IIa. Our
results will be stated for two different mappings Htarget !
H corresponding to two different gadgets, the one reducing
the locality parameter k by a factor of 2, and the other
reducing k ¼ 3 to k ¼ 2. By composing these mappings
we arrive at Theorem 1.

Now we state the two Lemmas used in the proof. The
two Lemmas together can be regarded as an infinitesimal
version of the Lieb-Robinson bound that governs time
evolution of a local observable under a local Hamiltonian
(see, e.g., [15]).

Lemma 1.—Let S be an anti-Hermitian operator. De-
fine a superoperator L such that LðXÞ ¼ ½S; X�
and L0ðXÞ ¼ X. For any operator H and integer k de-
fine rkðHÞ ¼ keSHe�S �P

k�1
p¼0

1
p!L

pðHÞk if k � 1 and

r0ðHÞ ¼ keSHe�Sk ¼ kHk. Then for any k � 0 one has
rkðHÞ � 1

k! kLkðHÞk.
Using this Lemma one can show the following.
Lemma 2.—Let S and H be any Oð1Þ-local operators

acting on n qubits with a bounded degree and interaction
strengths JS and JH, respectively. Then for any k ¼ Oð1Þ
one has kLkðHÞk ¼ Oðn � JkSJHÞ.

The proofs are rather elementary and can be found in
[16].

We shall use two types of gadgets proposed in [9],
namely, the subdivision gadget and the 3-to-2-local gadget.
The former will be used to break k-local interactions down
to 3-local interactions, while the latter breaks 3-local in-
teractions into 2-local interactions. Note that in the de-
scription of these two gadgets we shall often omit the
label u.

Subdivision gadget.—Let the target Hamiltonian be a
single k-qubit interactionHtarget ¼ JAB, where A, B act on

nonoverlapping subsets of dk=2e or less qubits and
kAk; kBk � 1. Introduce one mediator qubit u, choose a
parameter � � J, and define the simulator Hamiltonian
H ¼ H0 þ V, with

H0¼�j1ih1ju; V¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�J=2

p
Xu�ð�AþBÞþVextra: (1)

Here Vextra ¼ ðJ=2ÞðA2 þ B2Þ acts trivially on the mediator
qubit. Note that H contains only (dk=2e þ 1)-body inter-
actions. The purpose of the term V is to induce transitions

j0iu ! j1iu ! j0iu in the second order of perturbation
theory, such that the corresponding effective Hamiltonian
is proportional to ð�Aþ BÞ2 containing the desired term
AB and unwanted terms A2, B2, which we cancel by Vextra.
Next we define an approximate Schrieffer-Wolff transfor-
mation:

S ¼ �iJ1=2ð2�Þ�1=2Yu � ð�Aþ BÞ: (2)

A straightforward calculation utilizing Lemma 1 shows
that

eSHe�S¼
�
Hþ½S;H�þ1

2
½S;½S;H��

�
þOðJ3=2��1=2Þ

¼ Htarget 0

0 �IþOðJÞ

" #
þOðJ3=2��ð1=2ÞÞ; (3)

where we used that ½S; Vextra� ¼ 0. The upper and lower
blocks correspond to the subspaces P and Q ¼ I � P,
respectively. Thus, PeSHe�SP is close to Htarget ¼ JAB,

as desired; the error can be made Oð�JÞ by choosing
� ¼ J��2.
3-to-2-local gadget.—Let the target Hamiltonian be a

single 3-body interaction, Htarget ¼ JABC, where A, B, C

are one-qubit operators acting on different qubits and kAk,
kBk, kCk � 1. Introduce one mediator qubit u, choose
� � J, and define the simulator Hamiltonian H ¼ H0 þ
V with H0 ¼ �j1ih1ju, V ¼ Vd þ Vod þ Vextra with

Vd ¼ ��2=3J1=3j1ih1ju � C; Vod

¼ �2=3J1=3ffiffiffi
2

p Xu � ð�Aþ BÞ; (4)

and Vextra ¼ �1=3J2=3ð�Aþ BÞ2=2þ JðA2 þ B2ÞC=2.
Note thatH contains only 2-body interactions. The purpose
of the term V is to induce transitions j0iu ! j1iu ! j1iu !
j0iu in the third order of perturbation theory, such that the
corresponding contribution to the effective Hamiltonian is
proportional to ð�Aþ BÞ2Cwhich coincides with ABC up
to some unwanted terms which are canceled by Vextra. We
define an approximate Schrieffer-Wolff transformation

S ¼ �ix2�1=2O, where

O¼Yu�ð�AþBÞfIþxCþx2½C2� 2
3ð�AþBÞ2�g (5)

with x � J1=3��1=3. We calculate the effective
Hamiltonian PeSHe�SP. Let us first estimate an error
resulting from cutting off the expansion; see Lemma 1.
Recalling that L ¼ ½S; �� one gets

kPeSHe�SP� P½Hþ LðHÞ þ 1
2L

2ðHÞ�Pk � 1
6kPL3ðHÞPk þ 1

24kL4ðHÞk: (6)

We note that PL3ðHÞP ¼ PL3ðVodÞP since each application of S flips the mediator qubit and a nonzero contribution comes
only from the terms with an even number of flips. Using a bound k S k¼ OðxÞ, see Eq. (5), one can upper-bound the right-
hand side of Eq. (6) as OðJ4=3��1=3Þ. A direct but lengthy calculation shows that
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eSHe�S¼HþLðHÞþ1

2
L2ðHÞþ1

6
L3ðHÞþOðJ4=3��1=3Þ¼ Htarget 0

0 �IþOð�2=3J1=3Þ
" #

þOðJ4=3��1=3Þ; (7)

where Htarget ¼ JABC, as desired. The error OðJ4=3��1=3Þ
in Htarget can be made Oð�JÞ by choosing � ¼ J��3.

IIa: Combining the gadgets together.—Let Htarget ¼P
uH

u
target þHelse, where each term Hu

target can be dealt

with using one of the gadgets described above. The simu-
lator Hamiltonian is H ¼ P

uH
u þHelse, where Hu is the

simulator constructed for a gadget u as above. Using
Eqs. (3) and (7) one gets the inequality eS

u
Hue�Su � Iu�

Hu
targetþOð�JÞ, which yields Hu�e�SuðIu�Hu

targetÞeSu þ
Oð�JÞ. Applying Lemma 1, one gets ke�SuðIu �
Hu

targetÞeSu � Iu �Hu
targetk � k½Su; Iu �Hu

target�k ¼ Oð�JÞ;
see Eqs. (2) and (5). It follows that Hu � Iu �Hu

target þ
Oð�JÞ. Summing up these inequalities over all gadgets one
arrives at H � I �Htarget þOð�nJÞ, where I acts on the

mediator qubits. Thus

�ðHÞ � �ðHtargetÞ þOð�nJÞ: (8)

IIb: Bounding cross-gadget contributions.—Let
P ¼ N

uP
u be the projector on the subspace in which

every mediator qubit is in the state j0i. Define S ¼ P
uS

u

where Su is constructed using Eqs. (2) and (5). Note that for
both gadgets S is a Oð1Þ-local operator with bounded
degree and interaction strength Oð�Þ. We shall prove that

kPeSHe�SP�Htargetk ¼ Oð�nJÞ: (9)

Then one can get an upper bound on �ðHÞ by observing
that

�ðHÞ ¼ �ðeSHe�SÞ
� �ðPeSHe�SPÞ
¼ �ðHtargetÞ þOð�nJÞ:

Combining Eq. (8) with this upper bound, one gets
j�ðHÞ � �ðHtargetÞj ¼ Oð�nJÞ, which is the desired result.

It remains to prove Eq. (9). First, the contribution of all
commutators of S and Helse to eSHe�S can be bounded by
Oð�nJÞ; see Lemmas 1 and 2. To bound the cross-gadget
terms we exploit two important properties (valid for both
gadgets): (i) Su always flips a mediator qubit u; (ii) For u �
v one has ½Pu;Hv� ¼ 0, ½Pu; Sv� ¼ 0, and ½Hu

0 ; S
v� ¼ 0.

This latter property essentially captures the independent
action of the local gadgets. Using the properties (i) and (ii)
one can identify the two dominant cross-gadget contribu-
tions to PeSHe�SP, namely,O0

cg 	 P½Su; ½Su; Vv
extra��P and

O00
cg 	 P½Su; ½Su; Vv

d ��P (the term O00
cg appears only for the

3-to-2-local gadget) with u � v. Using the explicit form of
Vv
d , see Eq. (4), one concludes that O

00
cg ¼ 0. The norm of

every term O0
cg can be bounded as Oð�2JÞ and Oð�JÞ for

the subdivision and the 3-to-2-local gadgets, respectively.
Finally, the number of the termsO0

cg isOðnÞ because of the
bounded degree assumption. It proves Eq. (9). The details
of this derivation which are otherwise not very insightful
can be found at [16].
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