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Scattering at a central potential is completely characterized by the phase shifts which are the differences
in phase between outgoing scattered and unscattered partial waves. In this Letter, it is shown that, for 2D
scattering at a repulsive central potential, the phase shift cannot be uniquely defined due to a topological
obstruction which is similar to monodromy in bound systems.
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Introduction.—In physics, it is often crucial to find
‘‘suitable’’ coordinates. One important set of coordinates
in Hamiltonian mechanics is given by action-angle varia-
bles [1]. Action-angle variables played a crucial role in the
development of early quantum mechanics in the Bohr-
Sommerfeld quantization rule. The existence of action-
angle variables was already addressed by Einstein in
1917 [2]. He argued that a quantization of actions only
works if the mechanical system is integrable; i.e., it has as
many independent constants of motion in involution as
degrees of freedom. The existence of action-variables
was made more precise in the Liouville-Arnold theorem
[3]: if a connected component of the common level set of
the constants of motion is regular (i.e., the gradients of the
constants of motions are everywhere linearly independent
on the component) and bounded, then it has the topology of
a torus and action-angle variables exist in the neighbor-
hood of the torus. The angles are the coordinates on the
individual tori (which are just Cartesian products of
circles), and the actions change from torus to torus in a
smooth way. This theorem is local near a regular torus. If
and how these ‘‘local action-angle variables’’ fit together
globally has been ignored for a long time. Recently, it has
been shown that there can exist topological obstructions to
the global uniqueness of action-angle variables [4].
Consider a family of regular invariant tori in phase space
that starts and ends with the same torus. This family may
be a nontrivial torus bundle. Similarly, a Möbius strip is a
nontrivial interval bundle: even though every local piece of
it is just a rectangle, globally it is twisted. If the action
variables are changed by a nontrivial unimodular trans-
formation after one (mono) circuit (dromos) through a
family of regular invariant tori, then the system has mo-
nodromy. Monodromy implies that the action-angle varia-
bles do not give global coordinates. It is a topological
obstruction because the twist in the bundle cannot be
removed by smooth deformations of the bundle. By con-
trast, if the loop of regular tori can be contracted (passing
only through regular tori) it cannot have monodromy. In

this way, monodromy is related to a nonregular level set of
the constants of motion that is not a torus. Such critical sets
appear in phase space where the gradients of the constants
of motion are linearly dependent. The most prominent
example of a critical set that causes monodromy is a
pinched torus [5]. It exists in integrable systems with 2
degrees of freedom that have an unstable equilibrium point
of focus-focus type, i.e., with eigenvalues of the form ��
i!,��� i!. One of the simplest examples with this type
of monodromy is the spherical pendulum [5]. The quantum
version of this phenomenon [6] explains why there is no
global quantum number assignment for the hydrogen atom
in external fields [7], the H�2 molecular ion [8], the rovibra-
tional spectrum of CO2 [9], and other systems [10].

In this Letter, we study the implication of the unbounded
analog of monodromy in scattering problems. Elastic scat-
tering at a central potential is completely characterized by
the phase shifts which are the differences in phase of
outgoing scattered partial waves and outgoing unscattered
partial waves. For a planar system, a partial wave hx; yjl; pi
with angular momentum l and asymptotic momentum p at
infinity gains a phase ��l; p�. In fact, the action of the
scattering matrix S on a partial wave is

 Sjl; pi � exp�2i��l; p��jl; pi: (1)

All physical quantities such as scattering cross sections and
amplitudes can be expressed in terms of ��l; p�.

The phase shift is positive for attractive potentials and
negative for repulsive potentials. If there is no interaction,
then ��l; p� � 0. Similarly, the phase shift vanishes in the
limiting case of large p where the potential can be ignored
due to the dominating kinetic energy. The common proce-
dure to define the phase shift therefore is to smoothly
continue ��l; p� from large to small p. We will show that
for smooth repulsive potentials, there is a topological
obstruction to this procedure, and as a consequence, the
phase shift cannot be uniquely defined.
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Nonuniqueness of phase shift.—Consider a smooth re-
pulsive central potential V�r� with V�r� ! 0 sufficiently
fast for r! 1. The Taylor expansion at the origin is
V�r� � Ec ���2r2=2�O�r4� with Ec > 0. A semiclas-
sical expression for ��l; p� can be obtained from the WKB
method [11]. Assuming ��l; p� ! 0 for p! 1, the WKB
approximation yields �WKB�l; p� � �W�l; p�=�2@� where
�W�l; p� is the difference of the radial actions with and
without potential,

 �W�l; p� � W�l; p� �W0�l; p�

:� 2
Z 1
r0

��������������������������������������������
p2 � l2=r2 � 2�V�r�

q
dr

� 2
Z 1
r00

�����������������������
p2 � l2=r2

q
dr: (2)

Here, r0 and r00 are the classical turning points with and
without potential; i.e., r0 is the largest nonnegative root of
r2p2 � l2 � 2�r2V�r� or zero if l � 0 in combination with
p > pc � �2�Ec�1=2, and r00 � jlj=p. The difference �W
is finite while the individual integrals diverge (see Fig. 1).

Surprisingly, the function �W�l; p� is not globally
smooth: it is not differentiable at l � 0 when p < pc. To
illustrate this, we show contours of �W in Fig. 2(a).
Consider the derivative of �W with respect to l,
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Here, we substituted z � r2 and let U�z� 	 V�
���
z
p
�. In

contrast to the integrals in (2), their derivatives with respect
to l exist individually. The second integral is elementary
and gives �sgn�l��.

For general l and p, the integral @W�l; p�=@l in (3)
depends on the potential U. Interestingly, for l � 0, this

is no longer the case. The limiting case l! 0 is tricky:
depending on whether p > pc or p < pc the branch point
z0 of the square root in the integrand either collides or does
not collide with the integrand’s pole at z � 0 as l! 0. The
collision of the branch point and the pole leads to the
divergence of the integral, and the question arises of how
this divergence is compensated by the vanishing of the
prefactor l. At z � 0, the argument of the square root has
the Taylor expansion

 � l2 � �p2 � p2
c�z��2�2z2 �O�z3�: (4)

We note that in case � � 0, higher order terms can be
included and do not lead to a substantial change of the
following argument. For p < pc, the linear term of this
expression has a negative coefficient that does not depend
on l. Hence, the collision of z0 and zero as l! 0 does not
take place, and the integral is not critical in this limiting
case. Because of the prefactor l in (3), we thus have
@W�l; p�=@l! 0 as l! 0 and accordingly, the left and
right hand derivatives of �W�l; p� with respect to l at zero
are

 lim
l!0


@�W�l; p�
@l

� 
� �p < pc�: (5)

When p > pc, the coefficient of the linear term in (4) is
positive, and the collision of the branch point and the pole
does take place. Consider the integral in the complex plane.
For l � 0, we define the integration path C as shown in
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FIG. 1. Phase portrait (r, pr) with p2
r � 2�E� l2=r2 �

2�V�r� with E � 3, l � 1, and V�r� 	 0 (outer curve) and
V�r� � a=�1� �br�2� with a � 20 and b � 1 (inner curve).
The shaded area is equal to �W defined in (2).
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FIG. 2. (l, p)-plane with contours of (a) �W defined in (2) and
(b) � ~W defined in (10). The bold dot marks �l; p� � �0; pc�. The
potential is the same as in Fig. 1.
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Fig. 3. This gives
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To study the limit l! 0, we deform the integration path C
by wrapping it over the pole at zero and compensate the
capture of the pole by adding a small closed integration
path that encircles the pole in opposite direction. Thus, we
decompose C � C1 � C2 with C1 and C2 as shown in
Fig. 3. The integral (6) thus becomes
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The integration path C1 is not critical for l! 0, and due to
the prefactor l, the contribution to @W=@l vanishes for l!
0. For the choice of the branch of the square root explained

in Fig. 3, the differential �dz=�2z
�������������������������������������������
zp2 � l2 � 2�zU�z�

p
�

has residue �i=�2jlj� at z � 0. The integral along C2 thus
leads to the contribution

 l
Z
C2

�1

2z
�������������������������������������������
zp2 � l2 � 2�zU�z�

p dz � sgn�l��: (8)

We thus find that for p > pc, the contributions of
@W�l; p�=@l and @W0�l; p�=@l to @�W�l; p�=@l cancel
each other for l! 0 and, accordingly,

 lim
l!0

@
@l

�W�l; p� � 0 �p > pc�: (9)

One might think of removing the kink in Fig. 2(a) by
‘‘smoothing’’ �W�l; p� according to

 � ~W�l; p� �
�

�W�l; p� for l � 0
�W�l; p� � 2�l for l > 0

: (10)

This however introduces a kink at the segment of l � 0
where p > pc, see Fig. 2(b).

The WKB method gives 2@� � �W where l � m@,
m 2 Z. The values of � are only relevant mod �, see
(1). In other words, the function exp�2i�� is (locally)
periodic. In order to study this periodicity, we consider
the values p � k@ such that ��m@; k@� � 0 mod�, see

Fig. 4. The function exp�2i�� is not globally periodic
because of the singularity at �m; k� � �0; pc=@�. This can
be seen by transporting a unit cell in the lattice around the
singularity. The lattice cell crosses the line m � 0 accord-
ing to the modified � ~W of (10) which is smooth for p <
pc, while the original �W is smooth for p > pc. Thus, in
the presence of a repulsive localized potential, the phase
shift � cannot be globally defined. We call this phenome-
non quantum scattering monodromy.

Notice that the derivative of the phase shift with respect
to the energy gives the eigenvalues of the Wigner-Smith
time delay matrix Q � �i@S�1@S=@E. Semiclassically,
this derivative is given by @�W�l; p�=@E � �T which is
the classical time delay. This derivative is smooth every-
where apart from the point �l; E� � �0; Ec�.

The WKB approximation (2) does not account for the
collision of the classical turning point and the singularity of
the effective potential when l! 0. An asymptotic expan-
sion of the exact solution of the radial wave equation shows
that nevertheless the error is less than 1%.

Classical explanation.—The classical interpretation of
@�W�l; p�=@l is the angle of deflection. Consider the polar
angle ’ between the incoming and outgoing orbit in con-
figuration space,

 ’ �
Z 1
�1

_’dt �
Z 1
�1

l

�r2 dt: (11)

Substituting dt � dr= _r gives

 ’ �
Z r0

1

l

�r2

1

_r
dr�

Z 1
r0

l

�r2

1

_r
dr (12)

 � 2
Z 1
r0

l

r
���������������������������������������������������
2�Er2 � l2 � 2�r2V�r�

p dr (13)

where r0 is the turning point. We used _r < 0 in the first
integral and _r > 0 in the second integral in (12). Up to the
sign, the derivative @�W�l; p�=@l in (3) thus coincides
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FIG. 3. Complex z-plane with integration paths for the differ-
ential �dz=f2z�zp2 � l2 � 2�zU�z��1=2g which has a pole at the
origin z � 0 (marked by the cross). The square root is real along
the branch cut which extends from the turning point z0 (marked
by the dot) along the positive real axis; it is positive ‘‘above’’ and
negative ‘‘below’’ this branch cut. The integration path C (solid
line) is equivalent to the composition C � C1 � C2 (dashed
line).
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FIG. 4. Lattice of zeros (empty circles) of the phase shift
� mod � in the plane m � l=@, k � p=@, and parallel transport
of a lattice cell about the singularity �m; k� � �0; pc=@� (filled
circle). The potential is the same as in Fig. 1. @ � 0:25.
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with the angle of deflection �’ between the scattered and
the corresponding unscattered orbit.

Let us now follow the deflection angle �’ for pairs of
angular momenta (or equivalently impact parameters) and
asymptotic momenta (i.e., energies) along a closed path in
the (l, p)-plane that encircles the critical point �l; p� �
�0; pc�, see Fig. 5. Consider orbits that come in from y �
�1. For l � 0 and p < pc, the particle comes in along the
y-axis and slows down. Because of insufficient energy, it
cannot overcome the potential barrier and so turns back
towards y � �1. This orbit has �’ � �. If l is increased
to a value l � l�a� > 0 (keeping p < pc fixed), then the
particle gets deflected to the right, and �’ decreases to a
value �>�’�a� > 0. If we now increase p to a value
p�b� > pc (keeping l fixed), the deflection angle �’ de-
creases to a value 0<�’�b� < �’�a�. If we then decrease l
(keeping p fixed), the deflection angle decreases further. At
l � 0, the particle comes in along the y-axis, slows down,
but now has sufficient energy to cross the barrier and move
towards y � �1. This orbit has �’ � 0. If l is decreased
further to a negative value l�c� < 0, the particle gets de-
flected to the left giving a negative deflection angle ��<
�’�c� < 0. If p is then decreased to a value p�d� < pc
(keeping l at l�c� < 0), the defection angle decreases further
to a value ��<�’�d� < �’�c�. If l is increased (keeping
p fixed at p�d�), the deflection angle decreases even further,
and at l � 0, it reaches the value �’ � ��. Upon return-
ing to the starting point of the closed path � in the (l, p)-
plane that encircles the critical point �l; p� � �0; pc�, the
deflection angle thus is increased by 2�,

 

I
�

@�W�l; p�
@l

dl�
@�W�l; p�

@p
dp � 2�: (14)

Such a nonzero value from a closed loop � only occurs
when the critical point (0, pc) is encircled by �. If a system
has loops of regular values for which the deflection angle is

increased by (multiples of) 2�, we say the system has
scattering monodromy.

For the classical system, the angular momentum L and
the Hamiltonian function H are two independent constants
of motion which are in involution. The classical system is
therefore integrable. The level set fL � l;H � Eg in phase
space for a regular value (l, E) topologically is a cylinder.
The invariant cylinder R� S1 consists of an orbit (
R) as
shown in Fig. 5 and all its partners with different angle of
incidence (
S1) but the same l and E. At the critical value
(0, Ec), the gradients of L and H are linearly dependent.
The critical level set fL � 0; H � Ecg is topologically a
cone. It consists of the equilibrium point at the origin and
all orbits approaching it forward or backward in time. The
invariant cone (a pinched cylinder) in the phase space of a
scattering system is the analogue of the pinched torus in a
bound system. A loop of invariant cylinders that encircles
the invariant cone cannot be contracted, and as a result, �’
shows scattering monodromy.

Conclusions.—We have shown that the quantum scatter-
ing phase shift � for a smooth radially symmetric repulsive
potential cannot be globally defined. The classical ana-
logue is that the deflection angle changes by 2� upon
traversing a loop in the space of constants of motion that
encloses the critical value corresponding to the equilibrium
point. As opposed to the more abstract consequences of
monodromy in compact systems, this phenomenon is ‘‘di-
rectly’’ observable, e.g., by playing marbles (neglecting
moments of inertia) on a surface with a rotationally sym-
metric bump.
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FIG. 5. Orbits in configuration space coming in from y � �1
for four different pairs of angular momenta and asymptotic
momenta marked as bold points on the path in the (l, p)-plane
that encircles the critical point �l; p� � �0; pc�.
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