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Realization of a Strongly Interacting Bose-Fermi Mixture from a Two-Component Fermi Gas
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We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi
mixture with population imbalance. By analyzing in situ density profiles of °Li atoms in the BCS-BEC
crossover regime, we identify a critical interaction strength, beyond which all minority atoms pair up with
majority atoms and form a Bose condensate. This is the regime where the system can be effectively
described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering
lengths and beyond-mean-field contributions. Our study realizes a gedanken experiment of bosons
immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.
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Fermions are the fundamental building blocks of ordi-
nary matter, whereas bosons emerge as composite parti-
cles. One of the simplest physical systems to study the
emergence of bosonic behavior is a two-component fer-
mion mixture, where the composite boson is a dimer of the
two different fermions. A dramatic manifestation of bo-
sonic behavior is Bose-Einstein condensation, representing
the low-temperature phase of a gas of bosons. One way to
reveal the composite nature of the bosons is to immerse
such a Bose-Einstein condensate (BEC) into a Fermi sea of
one of its constituents. The degeneracy pressure due to the
Pauli exclusion principle affects the structure of the com-
posite boson, resulting in a zero-temperature quantum
phase transition to a normal state where Bose-Einstein
condensation is quenched.

In this Letter, we observe this transition experimentally.
We identify the regimes where a two-component Fermi gas
can be described as binary mixture of bosons and fermions,
and where the composite nature of the boson becomes
essential. The validity of a Bose-Fermi (BF) description
requires that all minority fermions become bound as bo-
sons and form a BEC. We determine the critical value of
1/kgya for the onset of superfluid behavior in the limit of
large population imbalance. Here, a is the fermion-fermion
scattering length, and kg is the Fermi wave number char-
acterizing the depth of the majority Fermi sea. Of course,
for an equal mixture, the zero-temperature ground state is
always a superfluid in the BEC-BCS crossover. It has been
shown previously that a crossover superfluid can be
quenched by population imbalance, also called the
Chandrasekhar-Clogston (CC) limit of superfluidity [1,2].
In this work, we determine the critical point where super-
fluidity can no longer be quenched by population imbal-
ance; i.e., the CC limit becomes 100%.

In the limit of a BF mixture [3], we observe repulsive
interactions between the fermion dimers and unpaired
fermions. They are parameterized by an effective dimer-
fermion scattering length of a,¢ = 1.23(3)a. This value is
in reasonable agreement with the exact value a,; = 1.18a
which has been predicted over 50 years ago for the three-
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fermion problem [4], but has never been experimentally
confirmed. The boson-boson interactions were found to be
stronger than the mean-field prediction in agreement with
the Lee-Huang-Yang prediction [5].

The system for this study is a variable spin mixture
of the two lowest hyperfine states |1} and ||) of °Li
atoms (corresponding to the |F = 1/2, my = 1/2) and
|F =1/2, mp = —1/2) states at low magnetic field) in
an optical dipole trap as described in Refs. [1,2]. A broad
Feshbach resonance, located at 834 G [6], strongly en-
hances the interactions between the two spin states. The
final evaporative cooling was performed at 780 G by low-
ering the trap depth. Subsequently, the magnetic-bias field
B is adjusted to a target value with a ramp speed of
=0.4 G/ms, changing the interaction strength adiabati-
cally. At the end of the preparation, our sample was con-
fined in an effective three-dimensional harmonic trap with
cylindrical symmetry. The axial (radial) trap frequency was
w./27 = 22.8 Hz (w,/27 = 140 Hz).

The phase diagram for the fermion mixture was obtained
from the analysis of in situ density profiles of the majority
(spin 1) and minority (spin |) components. The profiles
were recorded using a phase-contrast imaging technique
[2]. Under the local density approximation (LDA), low-
noise column-density profiles were obtained by averaging
the optical signal along equipotential lines (refer to Ref. [2]
for a full description of the image processing). For typical
conditions, the temperature of a sample was T/Tpy <
0.05, determined from the outer region of the cloud [2],
where Try = 1.0 uK is the Fermi temperature of the ma-
jority component measured as kzTry = mw?R;/2 (kg is
the Boltzmann’s constant, m is the atom mass, and R is the
axial radius of the majority cloud).

Figure 1 displays density profiles of imbalanced Fermi
mixtures for various magnetic fields, showing how the
spatial structure of a trapped sample evolves in the cross-
over regime. Near resonance, as reported in Ref. [2], three
distinctive spatial regions are identified: (I) a superfluid
core, (II) an intermediate region of a partially polarized
normal (N,) phase, and (III) a fully-polarized, outer wing.
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The core radius R, was determined as the peak position in
the column-density difference profile and the majority
(minority) radius R; (R)) was determined from the fit of
the outer region, r > R; (r > R,) of the majority (minority)
column-density profile to a zero-temperature Thomas-
Fermi distribution. The local spin polarization is defined
as o(r) = (n; — ny)/(ny + ny), where n; and n| are the
local majority and minority density, respectively.

Further on the BEC side, the sample has a more com-
pressed superfluid core, a narrower intermediate normal
region (gray region in Fig. 1) and a higher critical spin
polarization at the phase boundary o, = o(R.). Even-
tually, when B <780 G, there is no noticeable intermedi-
ate region, implying that every minority atom pairs up with
a majority atom in the superfluid core. In Fig. 2, we de-
termine the critical point for the disappearance of the par-
tially polarized normal phase in two different ways. Fig-
ure 2(a) shows the phase diagram for the N, phase in the
plane of interaction strength 1/kpa and spin polarization
o. An extrapolation of the critical line to o, = 1 yields
1/kpy.a = 0.74(4). Another implication of the absence of
an N, phase is that the size of the minority cloud R, ap-
proaches the radius R,. of the superfluid core. This extrapo-
lation is conveniently done using the dimensionless pa-
rameter Kk = (RT2 - Rf) / (RT2 — R?) [7], resulting in a value of
1/kpy.a=0.71(5). These values are in good agreement
with recent quantum Monte Carlo (QMC) calculations
[10].

The critical point marks the onset of the emergence of a
BF mixture from the two-component Fermi system. One
may suspect that near the critical point, the equation of
state of the BF mixture is complex, but we show now that a
very simple equation of state is sufficient to quantitatively

T (0), 367, 0.41, 0.76. T /Ty, < 0.05, and
Tro=~1.0 uK (see the text for defini-
tions).

account for the observed profiles. Because of the external
trap potential, the local chemical potential varies form zero
at the edge of a cloud to a maximum value in the center.
Therefore, knowledge of the three-dimensional density
profiles of a single cloud is sufficient to obtain the equation
of state [2,3,8,9,11].

For a zero-temperature mixture of bosonic dimers with
density n, = nj and mass m, = 2m and unpaired fermions
with density ny = n; — n) and mass m; = m, the energy
density £ can be decomposed as £ = &y, + Eur + &,
where &, (ny) and En(ny, ng) are the boson-boson and
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FIG. 2 (color online). Emergence of a Bose-Fermi mixture in
the phase diagram for a two-component Fermi gas. (a) The
critical polarization o, as a function of the interaction strength
1/kpra at the phase boundary. The open circle indicates the
previously measured critical value on resonance, o,y = 0.36 [2].
(b) k = (R} — R})/(R} — R?). The solid (red) lines are (a) an
exponential fit and (b) a linear fit to the data points. o, = 1 and
k =1 (i.e.,, Ry = R,) imply the absence of minority fermions in
the normal phase. Each data point consists of 9 to 23 indepen-
dent measurements, and the error bars indicate only the statis-
tical uncertainty.
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boson-fermion interaction energies, respectively, and & =
3/ S)ans/ 3 is the kinetic energy of fermions [a =
(672)*3h%/2m; and h is the Planck’s constant divided by
24r]. Here, we assume that the effective mass of a fermion
in a dilute mixture is the same as its bare mass [12]. Under
the LDA, the densities ny,(r) and n;(r) in the harmonic trap
should satisfy

a& 1
pro = any” +bef+§ rw?r?, (1)

wire, 2)

where g and g are the global chemical potentials of
fermions and bosons, respectively, referenced to the trap
bottom.

For the determination of the boson-fermion scattering
length ay;, we use a mean-field expression for the boson-
fermion interaction energy Epiy = (27h?/myg)apnpng
with My = mbmf/(mb + mf) = (2/3)1’7[ Since Mo =
mw?R?/2, Eq. (1) gives the relation, ay(r) = [pe(1 —
r*/R}) — anf/ 3/ (3”7’2 n,). We obtained a value for a

by averaging aps(r) over a mixed region (r <R, with
nys > 0.1np). Here, ny is the reference density defined as
no = (wo/a)*?. In this analysis, the noninteracting outer
wing provides absolute density calibration [9].

The scattering length ratio a;/a turns out to be almost
constant over the whole range, 700 G < B < 780 G, where
we could study BF mixtures [Fig. 3(a)]. For even lower
magnetic fields, severe heating occurred, probably due to
molecular relaxation processes. By averaging a total of 89
measurements, we obtain ap; = 1.23(3)a, close to the ex-
act value a,; = 1.18a calculated for the three-fermion
problem [4]. Our finding excludes the mean-field predic-
tion aps = (8/3)a. The detailed behavior above 750 G
requires further investigation.
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FIG. 3 (color online). Characterization of a strongly interact-
ing Bose-Fermi mixture. (a) The scattering length for dimer-
fermion interactions ay; and (b) for dimer-dimer interactions ayy,
in units of the fermion-fermion scattering length a. Black solid
circles were determined using mean-field theory and open (red)
circles including the LHY correction for a strongly interacting
Bose gas. The dashed lines indicate the calculated values ap; =
1.18a [4] and ay;, = 0.6a [13]. Each data point represents 7 to 17
measurements, and the error bars indicate only the statistical
uncertainty.

We now turn to the determination of the boson-boson
scattering length a,;, which parameterizes the boson-boson
mean-field energy Eym = (27h?/my)ay,ni. For a given
ays, the effective potential for bosons in the presence of
fermions is Vy(r) = mw?r* + 3mh?/m)ayns(r). Then,
Eq. (2) gives wyy — (27h%/m)ayyn,(r) = Vi (r). By fitting
the data in the core region (0.1R; <r <R, and ny, >
0.1ny) to this equation with wu, and ay, as two free
parameters, we obtained a value for ay,,. We used the value
ayr determined from the corresponding profiles.

The effective mean-field values for ay,/a show a strong
increase by a factor of about 2, as the system approaches
the critical point [Fig. 3(b)]. We attribute this behavior to
strong boson-boson interactions causing non-negligible
quantum depletion in the BEC. In this regime, the equation
of state has to include beyond-mean-field corrections, with
the leading term given by Lee, Huang, and Yang (LHY) [5]

as
2mh2ay,n? 128 [ai n
Ergy = ——2-0| 14 bbb | 3)
mb 15

Inclusion of the LHY correction leads to smaller fitted
values for ay,/a, which are now almost constant over the
whole range of magnetic fields with an average value of
ay, = 0.55(1)a. The exact value for weakly bound dimers
is ay, = 0.6a [13]. For kg ,a = 1, the LHY correction is
0.3Eyp,Mm, 1.€., @ 30% correction to the mean-field approxi-
mation. Here, kz, = (67%n,)'/?. Recently, the LHY cor-
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FIG. 4 (color online). Observed profiles of strongly interacting
Bose-Fermi mixtures compared to calculated profiles without
any adjustable parameter. (a)—(c) Density profiles of bosonic
dimers [dark gray (blue)] and unpaired excess fermions [gray
(green)] for various magnetic fields. The numerically obtained
density profiles (d)—(f) for bosons and (g)—(i) for fermion use
ay, = 0.6a and a,; = 1.18a (dashed line: mean-field descrip-
tion, solid line: including the LHY correction). The horizontal
dotted lines in (d)—(f) indicate the boson density corresponding
to 1/kpya = 1. The values for R; (in um) and R./R; were
respectively: for (a), 393 and 0.29; for (b), 381 and 0.33; for (c),
366 and 0.35.
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FIG. 5 (color online). Mean-field phase diagram of a dilute
Bose-Fermi mixture. f&i; and f, are the chemical potentials for
fermions and bosons in units of %(6772@)2/ 3 and %ﬁb,
respectively, where ii; = 2 Z—‘:;: (m’:ilz;)ﬁ and 71, =27 Z—%’: (m:li";:zr)s
(see Ref. [18]). The thick lines indicate the phase transitions
(solid line: first-order, dashed line: second-order). The thin lines
represent typical cuts through the phase diagram realized in our

trapped samples.

rections have been observed via the upshift of collective
oscillation frequencies for a strongly interacting BEC [14].
Our results show that a two-component Fermi mixture
beyond the critical point can be effectively described as a
strongly interacting BF mixture. In Fig. 4, we compare our
experimental data with numerically obtained density pro-
files [15] without any adjustable parameter, showing ex-
cellent agreement. After including the LHY correction,
small discrepancies are visible only at the highest boson
densities exceeding kr,a = 1, where one would expect
unitarity corrections. It is surprising that we did not need
any beyond-mean-field corrections for the boson-fermion
interaction. Such corrections have been calculated for a
system of point bosons and fermions [16]. However, in-
cluding them into our fit function degraded the quality of
the fit. Recent QMC simulations have shown that the
equation of state of a polarized Fermi gas on the BEC
side is remarkably close to & = E gy + Eppm + & with
ay, = 0.6a and ap; = 1.18a down to 1/kpra > 0.5 [10,17]
in agreement with our findings. It appears that the beyond-
mean-field term is offset by other corrections, possibly due
to the composite nature of the bosons. Further studies of
this rich system could address beyond-mean-field terms,
characterize the breakdown of the BF description close to
the critical point, and look for finite temperature effects.
One motivation for the realization of BF mixtures is to
extend studies of *He -*He mixtures. With tunable inter-
actions near Feshbach resonances, cold atom systems can
access a wider regime of the phase diagram. Predicted phe-
nomena include phase separation and miscibility [11,18],
boson-mediated, effective fermion-fermion coupling
[12,19], and novel collective excitations [20,21]. The den-
sity profiles in Fig. 4 show a sharper boundary for higher
magnetic fields. This is consistent with Fig. 5 which pre-
dicts that in the same magnetic field range, the transition
from full miscibility to phase separation has taken place.

An interacting BF system has been also realized in
87Rb-*'K mixtures [22,23]. The SLi system studied here
has the advantages of using a single atomic species and
much longer lifetimes of several seconds, but cannot access
attractive boson-fermion interactions.

In conclusion, a two-component Fermi gas with popu-
lation imbalance is a realization of a long-lived strongly
interacting BF mixture. This is a new BF system with
tunable interactions. Furthermore, it offers intriguing pos-
sibilities to study the emergence of bosonic behavior from
a mixture of fermions.
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