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We describe a transition from bursting to rapid spiking in a reduced mathematical model of a cerebellar
Purkinje cell. We perform a slow-fast analysis of the system and find that—after a saddle node bifurcation
of limit cycles—the full model dynamics temporarily follow a repelling branch of limit cycles. We
propose that the system exhibits a dynamical phenomenon new to realistic, biophysical applications: torus
canards.
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Bursting—a repeated pattern of alternating quiescence
and rapid spiking—occurs in many neural systems, per-
haps with functional implications [1,2]. Mathematical
models developed to characterize bursting neural activity
typically share common dynamical traits (e.g., excitability,
slow-fast dynamics) and bifurcations [3,4]. In these mod-
els, the mechanisms that produce both periodic spiking and
bursting activity are well understood [5,6]. Yet the transi-
tion between these states often produces complicated dy-
namics (e.g., chaos, homoclinic bifurcations, blue sky
catastrophes, period doubling cascades) more difficult to
characterize [7–11].

In this Letter, we describe a novel mechanism for the
transition from bursting to spiking activity observed in a
realistic, biophysical model of a cerebellar Purkinje cell.
We propose a reduction of this detailed model to study the
transition and describe an intermediate state during which
fast spiking activity is amplitude modulated by a slower
rhythm. In this intermediate state we observe a new type of
dynamics in a continuous system that follows the attracting
and repelling branches of limit cycles in the fast subsystem.
We compare these dynamics to traditional canard phe-
nomena and propose that a new type of canard—a torus
canard—occurs in the reduced model and provides a po-
tential explanation of the detailed model activity.

The modeling and analysis were motivated by results
observed in a detailed computational model of a cerebellar
Purkinje cell [12,13]. The detailed model consists of 559
compartments, each with 12 types of ionic currents, result-
ing in over 6000 dynamical variables. We illustrate the
results of a typical numerical simulation of this model in
Fig. 1. Between the quiescent intervals of bursts (Q), we
observe rapid spiking activity modulated in amplitude.
This modulation becomes more complicated as time pro-
gresses until the activity reenters the quiescent burst phase.
What dynamical and biophysical mechanisms produce this
bursting activity interspersed with amplitude modulated
(AM) spiking?

To answer this, we propose a reduced model of the
detailed cerebellar Purkinje cell consisting of a single

compartment with four ionic currents. The voltage and
current dynamics follow:
 

_V � �J� gKn4�V � 95� � gNam0�V�3h�V � 50�

� gL�V � 70� � gCac2�V � 125�

� gMM�V � 95� (1a)

_x � �x0�V� � x�=�x�V�: (1b)

Five currents affect the voltage in (1a): a delayed rectifier
potassium current (gK � 10:0), a transient inactivating
sodium current (gNa � 125:0), a leak current (gL � 2:0),
a high-threshold noninactivating calcium current (gCa �
1:0), and a muscarinic receptor suppressed potassium cur-
rent (or M current, gM � 0:75). The dynamics of each
gating variable follow (1b) with x replaced by n, h, c, or
M. We implement the equilibrium function �x0�V�� and
time constant ��x�V�� for each current from [14] and make
the standard approximation of replacing the sodium acti-
vation variable with its equilibrium function �m0�V��. Of
the five variables, the M current evolves on a much slower
time scale (at least 10 times slower) and acts as the slow
variable in this slow-fast system. In what follows, we
increase the excitation of the reduced model neuron by
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FIG. 1. Simulation results of the soma compartment voltage
(black) from a detailed Purkinje cell model [13]. An injected
current (gray) depolarizes the cell and produces rapid spiking
modulated in amplitude (AM, upper left expanded trace) fol-
lowed by more complicated activity (upper right expanded trace)
between the quiescent intervals (Q) of bursts. The horizontal and
vertical scales (right) denote 50 ms and 50 mV, respectively.
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increasing the magnitude of parameter J and compute
numerical solutions and bifurcation diagrams for the sys-
tem with XPPAUT and AUTO [15].

We begin with a description of the voltage activity
computed for decreasing values of the parameter J to
illustrate the transition from bursting to rapid spiking.
For J >�22:5, the dynamics approach a stable fixed point
(V � �54 mV for J � �22:5, not shown). As we de-
crease J through �22:5, bursts of activity emerge (Fig. 2,
top). Within a burst the interval between, and amplitude of,
the rapid spiking increase (from 1.6 to 2.0 ms, and 40 to
65 mV, respectively) after an initial transient. The inter-
burst intervals (lasting approximately 200 ms) are much
longer than the intervals between spikes. Decreasing J
further we find that the burst duty cycle increases, but
that the interval between burst onsets remains approxi-
mately constant. As we depolarize the neuron, more M
current must slowly accumulate to stop the bursting; thus,
the duration of spiking, compared to quiescence, increases.
Near J � J? � �32:938 25 the transition from bursting to
rapid spiking begins and a new type of activity appears:
bursts interspersed with amplitude modulated (AM) fast
spiking activity (Fig. 2, middle). The new activity increases
the interval between bursts by integer multiples of 120 ms,
the period of one complete AM cycle. In Fig. 2, one AM
cycle separates the quiescent burst phases. We find (but do
not show) that the number of AM cycles between bursts
appears unpredictable; in simulations, we have observed
between zero and 25 AM cycles between bursts. Reducing
the parameter further to J � �32:94 we find only AM
spiking (and no bursting) activity. For J <�32:96 only

rapid spiking without amplitude modulation occurs and the
transition from bursting to rapid spiking is complete.

What dynamical mechanisms govern the intermediate
state between bursting and rapid spiking in the model? To
address this, we isolate the fast subsystem and examine its
set of equilibria (i.e., the critical manifold) and periodic
orbits. In this slow-fast decomposition of (1), we fix J, treat
the slow variable M in (1) as a parameter, and compute
bifurcation diagrams numerically in AUTO as implemented
in XPPAUT [15]. We then study the global dynamics of the
full model on the bifurcation diagram of the fast subsys-
tem. For J � �23:0 the dynamics exhibit well known
behavior: rapid spiking begins at a fold of fixed points
and ends at a fold of limit cycles (i.e., fold-fold cycle
bursting [4]). But, as we decrease J towards J?, we find
novel activity develops as we now describe.

In Fig. 3 we plot a bifurcation diagram (thick and color)
for the fast subsystem and simulation results for the full
system (thin and grayscale) with J � J?. In the full system,
rapid spiking begins when theM current decreases past the
fold of fixed points in the fast subsystem; at this fold or
knee, the attracting and repelling fixed points merge and
annihilate. The voltage then increases rapidly, and the full
dynamics approach the attracting curve of limit cycles in
the fast subsystem. With each spike, the slow M current in
the full system increases until the dynamics reach a fold of
limit cycles in the fast subsystem. At this fold, we expect
spiking to cease consistent with the fold-fold cycle bursting
observed for J � �23:0. Instead we find that spiking con-
tinues as the dynamics of the full system follow the curve
of limit cycles through the fold to the branch of repelling
limit cycles. The M current decreases, and the full dynam-
ics follow temporarily the repelling branch of limit cycles

100 ms

J = -33.0

J = -32.94

J = -32.93825

J = -32.9380

J = -23.0

FIG. 2. The transition from bursting to AM spiking to rapid
spiking in the reduced model as J decreases. We plot in gray the
voltage activity of the neuron for five different values of J. In the
middle trace (J � J?) we observe both bursting and AM spiking
activity. We shade one complete AM cycle in black. Further
reductions in J result in AM spiking and (unmodulated) spiking.
The vertical bars in the top and bottom traces denote a 100 mV
range, extending from �60 to 40 mV, with 10 mV between tick
marks.
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FIG. 3 (color online). Bifurcation diagram of the fast subsys-
tem (thick and color) and dynamics of the full system (thin and
gray/black) for J � J?. In the fast subsystem, the attracting and
repelling fixed points and limit cycles meet at folds (yellow
circles) labeled Fold FP and Fold LC, respectively. The attracting
limit cycles appear in a supercritical Hopf bifurcation (not
shown). At the fold of limit cycles the (slow) M current changes
direction and the complete dynamics follow the branch of
repelling limit cycles temporarily until returning to the curve
of attracting fixed points (gray) or attracting limit cycles (black).
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until returning to the branch of attracting fixed points (light
gray) or limit cycles (black). If the former, then the dy-
namics enter the quiescent phase of bursting and the M
current decreases. If the latter, then an AM cycle occurs;
rapid spiking continues and the dynamics again approach
the fold of limit cycles as the M current increases.

Decreasing J past J? to �32:94 eliminates bursting in
the full model dynamics and results in AM spiking alone.
During one complete AM cycle, the slow M current in the
full dynamics increases along the branch of attracting limit
cycles, passes through the fold of limit cycles, and de-
creases along the branch of repelling limit cycles before
returning to the branch of attracting limit cycles (Fig. 4).
As J decreases the extent of this slow modulation also
decreases both in period (from approximately 0.11 to
0.08 s) and in magnitude (the AM of the rapid spiking
decreases from approximately 16 to 0.5 mV). These reduc-
tions are suggested in Fig. 4 and coincide with smaller
excursions of the full dynamics from the fold point as J

decreases. The transition from AM spiking to unmodulated
spiking occurs at a supercritical torus bifurcation (negative
first Lyapunov coefficient) near J � JTB � �32:96 in the
full system. At this bifurcation, a stable torus and unstable
limit cycle meet, and a stable limit cycle emerges. The
multipliers of the bifurcating limit cycle possess a complex
conjugate pair whose moduli decrease through one as J
decreases through JTB. The resulting stable limit cycles
possess four multipliers of moduli less than one, and one
multiplier of unit modulus corresponding to the fixed
radius of the orbit. We illustrate this transition in a
Poincaré map sampled at the apex of each spike in V
(Fig. 4). Decreasing J further produces lower amplitude,
faster oscillations that cease when J <�150 and the su-
percritical Hopf bifurcation occurs at M> 1, outside the
physiological range.

We propose that the dynamics described above extend in
new directions the classical canard phenomena observed in
lower dimensional slow-fast systems. The prototypical
canard example consists of two variables evolving on
different time scales (e.g., the Van der Pol equation). For
this two-dimensional system, the critical manifold contains
curves of attracting and repelling fixed points. In the full
(2D) system, the canards initiate at a Hopf bifurcation. The
subsequent periodic dynamics follow the curve of attract-
ing fixed points until reaching a fold of fixed points in the
fast subsystem. Here, the slow variable reverses direction
and the full dynamics follow temporarily the curve of
repelling fixed points of the fast subsystem, eventually
returning to a stable branch of fixed points [16].

A related, but novel, phenomena appears to occur in the
reduced, 5-dimensional model of the cerebellar Purkinje
cell. The bifurcation diagram in Fig. 3 illustrates the union
of fixed points and limit cycles of the fast subsystem as M
is changed. During the active phase of the burst, the full
model dynamics follow the curve of attracting limit cycles.
Each (fast) cycle within the burst increases the (slow) M
current until the global dynamics reach a fold in the
bifurcation diagram. At this fold of limit cycles the average
dynamics of the slow variable reverse direction (i.e., the
dynamics of the M current averaged over individual spikes
in the fast subsystem change sign from positive to nega-
tive). The full dynamics then follow temporarily the curve
of repelling limit cycles. Consistent with classical canard
phenomena, the parameter value (J) determines the length
of time spent near the repelling branch and to which stable
branch the dynamics return. What differs here is that the
canard initiates not after a Hopf bifurcation at a fold of
fixed points, but instead after a torus bifurcation at a fold of
limit cycles. We therefore label this phenomena a torus
canard.

The torus canard serves as an intermediary between the
bursting and rapid spiking states. This is often the case for
canards associated with dramatic changes in dynamics
resulting from small changes in a control parameter (e.g.,
a canard explosion). In addition, complex (or chaotic)
behavior often appears near the transition between differ-

FIG. 4 (color online). Bifurcation diagrams of the fast subsys-
tem (thick and color) and dynamics of the full system (thin and
gray/black) for five different values of J. In the main figures, the
vertical axes are identical; the horizontal axes (identical for top
four figures) indicate the value of M and the axis is expanded for
the bottom figure. For J � �23, only fold-fold cycle bursting
occurs (gray). At J � J?, the dynamics follow temporarily the
branch of repelling limit cycles, eventually returning to the
branch of attracting fixed points (burst in gray) or the branch
of attracting limit cycles (AM cycle in black). Reducing J further
results in AM spiking alone and rapid, unmodulated spiking.
Inset: Poincaré map (voltage versusM current) of the full system
for five different values of J. Stable fixed points, corresponding
to unmodulated rapid spiking, occur for three values of J. For
J � f�32:95;�32:94g stable invariant closed curves indicate
amplitude modulation in the complete system.
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ent types of activity and may occur here (Fig. 2, middle).
The sequence of bifurcations in this transitional region
may be quite complicated and warrants further study.

The (slow) M current and (fast) calcium current play
complementary biophysical roles in the reduced model.
During the active phase of a burst, the M current acts to
hyperpolarize the cell and discourage spiking, while the
calcium current acts to depolarize the cell and promote
spiking. When J > J?, the hyperpolarization eventually
wins, spiking stops, and the cell enters the quiescent phase
of the burst. The M current is essential to this bursting
activity [17]. For J < J?, the depolarizing effect of the
calcium current prevents the runaway hyperpolarization
due to the M current. The quiescent phase of the bursts
no longer occurs and we find instead only slow modulation
of the fast spiking activity. Decreasing J further reduces
the M current dynamics and produces unmodulated fast
spiking activity. We note that, in the reduced model, block-
ing either the M or calcium current during AM spiking
produces unmodulated rapid spiking. These predictions
were confirmed in the detailed model.

In this Letter we described a novel mechanism that
occurred during the transition from bursting to rapid spik-
ing activity: torus canards. We identified this activity in a
physiologically realistic computational model of a cerebel-
lar Purkinje cell that motivated the simplified mathematical
model. By studying the slow-fast dynamics of the reduced
system, we developed a better understanding of the physi-
ological mechanisms (the M current and calcium current)
and dynamical mechanisms (the torus canard) that could
produce the activity observed in the detailed model.

Canards have been observed in other mathematical mod-
els of neural systems [18–21]. However, in all of these
systems, the canards occur along branches of attracting and
repelling fixed points. The dynamics presented here are
unique in that the canards occur along branches of attract-
ing and repelling limit cycles in a realistic, biophysical
model. In addition, these results were not limited to the
reduced model; similar dynamics were also observed in a
detailed biophysical model. Moreover, the slow modula-
tion of the fast spiking activity appears to occur in vitro
(see Figs. 7A and 8A of [22]). Additional recordings from
cerebellar Purkinje cells could test experimentally the ex-
istence of torus canards and the role of the M current in
these dynamics.

Our analysis focused on a computational, slow-fast de-
composition of (1). Although useful, this decomposition
appears inadequate; we note, in particular, that small
changes in the middle three bifurcation diagrams of
Fig. 4 coincide with large changes in the full dynamics
(namely, the transition from bursting to AM spiking to
rapid spiking). A better understanding of these dynamics
will require a more sophisticated treatment [23] involving,

perhaps, dimensional reduction [24] or an analysis of the
canards in associated Poincaré maps [25]. The transition
from bursting to spiking exhibits a mixed mode oscillation
pattern (with bursts acting as the large amplitude oscilla-
tions and AM cycles as the small amplitude oscillations).
The system may therefore benefit from this type of analysis
as well [26].
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