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We propose a numerical renormalization group (NRG) approach to steady-state currents through
nanodevices. A discretization of the scattering-states continuum ensures the correct boundary condition
for an open quantum system. We introduce two degenerate Wilson chains for current carrying left- and
right-moving electrons reflecting time-reversal symmetry in the absence of a finite bias V. We employ the
time-dependent NRG to evolve the known steady-state density operator for a noninteracting junction into
the density operator of the fully interacting nanodevice at finite bias. We calculate the differential
conductance as function of V, T, and the external magnetic field.
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Introduction.—The description of quantum systems out
of equilibrium is one the fundamental challenges in theo-
retical physics. Even a simple nonequilibrium situation, the
current transport through an interacting junction at finite
bias is not fully understood. The Coulomb blockade [1] and
advent of the experimental realizations of the Kondo effect
in such devices [2,3] requires a many-body description at
low temperatures.

While the equilibrium dynamics is well understood [4],
the nonequilibrium steady-state has been mainly investi-
gated using perturbative approaches [5–8] based on
Keldysh theory [9], the Toulouse point [10], and the flow
equation [11]. Landauer-Buettiker type approaches [12]
treat the charging effect only on a mean-field level by
mapping the strongly interacting quantum problem onto a
model of noninteracting fictitious particles, unsuitable to
describe the Coulomb-blockade physics [1]. In weak cou-
pling and high temperature, the ac and dc transport through
molecular wires can be addressed by a quantum master
equation for the reduced density matrix of the junction
[13]. All those approaches have only a limited validity of
their parameter regimes. Recently, Han proposed an alter-
native perturbative method [14] based on Hershfield’s
steady-state density operator [15–18]. Based on similar
ideas, a scattering-states Bethe-ansatz approach to an in-
teracting spinless quantum dot has been implemented [19]
for finite bias.

We present a numerical renormalization group approach
[4] to open quantum systems based on scattering states
[15]. It combines (i) Wilson chains for single-particle
scattering-states proposed below, (ii) Hershfield’s steady-
state density operator [15] for a noninteracting junctions at
finite bias, and (iii) the time-dependent NRG (TD-
NRG)[20–22]. Our scattering-states basis will be also
useful for Quantum Monte Carlo and density matrix renor-
malization group (DMRG) approaches [23]. With our
nonperturbative method, steady-state currents through
interacting nanodevices can be obtained accurately for

arbitrary temperatures, magnetic fields, and interaction
strength.

Dissipative steady-state currents only occur in open
quantum system in which the system size L has been
sent to L! 1 before t! 1. Transient currents can be
calculated on a finite-size tight-binding chain within the
TD-NRG as well as the time-dependent DMRG [23,24].
However, such transient currents vanish for t! 1 or even
reverse their sign [24] in those approaches, a consequence
of the non-interchangeable limit t! 1 and L! 1 [18].
We circumvent this problem by discretizing a single-
particle scattering-states basis. Therefore, those states re-
main current carrying and a faithful representation of an
open quantum system.

Theory.—Interacting quantum dots (QD), molecular
junctions or other nanodevices are modeled by the inter-
acting region H imp, a set of noninteracting reservoirs HB,
and a coupling between both subsystem HI: H �

Himp �HB �HI. Throughout this Letter, we restrict
ourselves to a junction with a single spin-degenerate orbital
d with energy Ed, subject to an external magnetic field H
and an on-site Coulomb repulsionU. The orbital is coupled
to a left (L) and a right (R) lead via the tunneling matrix
elements V��L;R, and H given by
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Here, n̂d� � dy�d�, and cy��� creates a conduction electron
in the lead � of energy � and density of states ����.

This Hamiltonian is commonly used to model ultrasmall
quantum dots [2,5]. In the absence of the local Coulomb
repulsion H U � U�

P
�n̂

d
� � 1�2=2, the single-particle
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problem is diagonalized exactly in the continuum limit
[14–17,25,26] by the scattering-states operators
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where �V �
������������������
V2
L � V

2
R

q
, and the Green function Gr

0��z� �
�z� �Ed �U=2� �H=2� � �V2

R
d�����=�z� ��	�1. In

the limit of infinitely large leads, the single-particle spec-
trum remains unaltered, and these scattering states diago-
nalize the Hamiltonian [15] (1) for U � 0:

 H i
0 �H �U � 0� �

X
��L;R;�

Z
d���y�������: (3)

Hershfield has shown that the density operator for such a
noninteracting current carrying quantum system retains its
Boltzmannian form [15,18] even at finite bias:

 �̂ 0 �
e���H

i
0�Ŷ0�

Tr�e���H
i
0�Ŷ0�	

; Ŷ0 �
X
��

��

Z
d��y�������:

(4)

The Ŷ0 operator accounts for the occupation of the left and
right-moving scattering states, and �� for the different
chemical potentials of the leads.

Steady-state NRG.—In order to apply the NRG to such
an open quantum systems, the scattering states ���� are
discretized on a logarithmic energy mesh using the NRG
discretization parameter � [4]. In contrary to a closed
system, however, each of these single-particle states carries
a finite current. Even for asymmetric coupling, the spectra
of the right and left movers remains symmetric, and the
total current vanishes always at zero bias.

Defining the creation operator for a fictitious left- or
right-moving d��-orbital dy�� � �V

R
d�

����������
����

p
�Gr

0����
i��	
�y���, the physical d-level can be decomposed into
dy� � rRd

y
�R � rLd

y
�L by inverting Eq. (2) and using r� �

V�= �V. For U � 0, the Hamiltonian is diagonal in the left
and right movers. We use these d��-orbitals as starting
vector of the Householder transformation [4] mapping the
discretized scattering-states continuum onto two semi-
infinite Wilson chains [4], as depicted in Fig. 1. These
chains are almost identical to standard Wilson chain of a
noninteracting resonant level model [4]. Each fictitious
d��-orbital consists of a normalized linear combination
of scattering states ����: no auxiliary degrees of freedom
has been introduced into the problem.

We divide Gr
0���� i�� into magnitude and phase,

Gr
0���� i�� � ei�����jGr

0���� i��j, and absorb the en-
ergy dependent phase ����� into the scattering-states op-
erators ���� by a gauge transformation. Then, the Wilson
chains consist only of purely real tight-binding parameters.
Diagonalizing the proposed scattering-states Wilson

chains yields a faithful representation of the steady-state
density operator �̂0 for arbitrary bias.

The current operator expanded in scattering states ����
acquires an additional energy dependence via the
scattering-phase shift �����. In our model (1), however,
the current remains connected to the spectral function
Ad�!� of the retarded nonequilibrium Green function [27]
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G0

e

X
�
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d!�f�w��L� � f�w��R�	
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in such a scattering-states formulation even for finite
U[15,17,28]. f�!� denotes the Fermi function, G0 �
�e2=h�4�L�R=��L � �R�

2, �� � r2
�	 �V2��0�, � � �L�

�R, and 	Ad��!� � �=mGr
d��!� i��.

Coulomb interaction.—Expanding the operator n̂d� in
the orbitals d�� yields two contributions: a density and a
backscattering term: n̂d� � n̂0

� � Ô
back
� , with n̂0

� �P
�r

2
�d
y
��d��. The backscattering term reads

 Ô back
� � rLrR�d

y
�Rd�L � d

y
�Ld�R� (6)

and describes transitions between left and right movers.
This term vanishes in the tunnelling regime, where either
rL or rR vanishes.

We will include the full Coulomb interaction into our
theory in two steps. Since H0

U, defined as H0
U �

U
2 �

�
P
�n̂

0
� � 1�2, commutes with Ŷ0, the steady-state density

operator �̂0 evolved into ~�0 � exp����H i � Ŷ0�	=Z
with H i �H i

0 �H
0
U proven by the arguments given in

Ref. [18]. Ôback
� can be neglected in the tunneling regime

where �̂! ~�0. Then, the steady-state spectra is com-
pletely determined by a single effective orbital, and the
equilibrium spectral function is recovered.
H i marks the new starting point of our theory. The full

Hamiltonian H of the interacting model differs from H i

by the additional backscattering terms. H does not com-
mute with Ŷ0, and the analytical form of steady-state
density operator of the fully interacting problem is not
explicitly known [15,18]. We obtain a solution [20–22]
by evolving ~�0 with respect to the full Hamiltonian H into
its steady-state value �̂1 � limt!1e�iH t~�0e

iH t. In the
current-voltage relation (5), the spectral function Ad��!�

Uµ
µ

junction

left−movers
right−movers

backscattering
R

L

FIG. 1 (color online). The local d-orbital is expanded in left-
moving and right-moving scattering states. Each contributions
defines one fictitious local orbital d�� of the junction of the
scattering-states NRG. The Coulomb repulsion introduces back-
scattering between left and right movers.
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for U � 0 is replaced by the nonequilibrium spectral func-
tion [28] calculated with respect to �̂1. The details of this
algorithm embedding the calculation of equilibrium spec-
tral functions [29,30] are published in Ref. [22].

Results.—All energies are measured in units of � �
	 �V2��0�; a constant band width [4] of ��!� �
1=�2D���D� j!j� was used withD=� � 10. The number
of retained NRG states was Ns � 2200; a � � 4 was
chosen. The model lacks channel conservation: only the
total charge and z-component of the spin served as quan-
tum numbers. We defined R � �L=�R and always kept
� � �L � �R constant. The two chemical potentials ��
were set to �L � �r

2
RV and �R � r2

LV as function of the
external source-drain voltage V consistent with a serial
resistor model.

The nonequilibrium spectral function for a symmetric
junction is plotted for U � 8 and different bias V in
Fig. 2(a). Multiple backscattering events cause gain (or
lost) of single-particle excitation energy proportional to the
applied bias. The Kondo resonance is destroyed with
increasing bias due to redistribution of spectral weight
towards higher energies. An onset of two weak peaks in
the vicinity of the two chemical potentials remains for
jVj> � [16]. For large R� 1, such backscattering pro-
cesses are suppressed. The spectral function remains bias-
independent. The Kondo resonance remains pinned to
�L ! 0 as depicted in Fig. 2(b), and we recover the
tunneling regime.

The differential conductance is plotted for different
asymmetry ratios R in Fig. 3(a) using the same parameters
as in Fig. 2. With increasing R, the nonequilibrium spectral
function is less broadened and, therefore, G�V� decreases
for large bias voltage. Asymptotically, G approaches the
equilibrium t-matrix which is the exact result for R! 1
and T ! 0.

The effect of an external magnetic field onto the differ-
ential conductance is shown in Fig. 3(b). An increasing
magnetic field splits the zero-bias anomaly which is further
suppressed by the finite bias in a symmetric junction. This
field dependence has been used in experiments [2] as
hallmark for the Kondo physics at low temperatures.

In Fig. 3(c), the NRG conductance for U � 5 is com-
pared to the result of Ref. [16]. Both curves agree for low
bias. The NRG result shows a weaker decay of the zero-
bias anomaly with increasing bias with a less pronounce
maximum at large bias. The symmetrized equilibrium
t-matrix [4] is added for comparison as a dashed line.
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FIG. 2 (color online). Nonequilibrium spectral function for
(a) a symmetric junction R � 1 at various values of finite bias
voltage V, and (b) for a strongly asymmetric junction R � 1000.
The insets show the evolution of the Kondo-resonance.
Parameters: U � 8, �f � �4, and T ! 0.
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FIG. 3 (color online). The differential conductance G �
dI=dV as function of the bias voltage (a) for different asymmetry
factors R, (b) for different magnetic field H � 0, 0.1, 0.2, 0.4,
and R � 1. Parameters: as in Fig. 2. (c) Comparison between the
results for U � 5 from Ref. [16] and the NRG calculation at
T=� � 0:04 and R � 1 using z-averaging over 4 z-values
[20,21].
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The more generic case of an asymmetric junction with
respect with a relatively large local Coulomb repulsion is
plotted in Fig. 4. The differential conduction reflects the
lack of symmetry under source-drain voltage reversal.
As depicted, the zero-bias peak vanishes with increasing
temperature.

Conclusion.—A powerful new approach to the steady-
state currents through nanodevices has been presented. We
have introduced a NRG method based on scattering states
to incorporate the correct steady-state boundary condition
of current carrying systems. The steady-state density op-
erator [15] of a noninteracting junction is evolved into the
one of the interacting nanodevice using the TD-NRG [20].
We have established an accurate solution for the strong-
coupling regime and calculated steady-state currents for
arbitrary ratios R at finite bias. The tunneling regime is
included as an exact limit. Our approach does not suffer
from any current reflection inherent to numerical simula-
tions of closed quantum systems [24]. We have concen-
trated on the low-temperature properties of the nanodevice
since the combination of arbitrary bias, large Coulomb
repulsion, and finite magnetic field remains the most diffi-
cult regime for all perturbative methods. However, the
NRG is equally suitable to calculate the crossover from
the low to the high-temperature regime as demonstrated in
Fig. 4. An experimental hallmark [2] for Kondo physics,
the splitting of the zero-bias Kondo peak with increasing
magnetic field, is correctly described by our approach for
arbitrary temperature, bias, and field strength.

This theory can be extended to more complicated multi-
orbital models. Equation (5) must be modified and requires
more complex correlation functions. Since single-particle
scattering states can always be obtained exactly, the con-
struction of the Wilson chain parameters is straight forward
using the corresponding expansion of the local degrees of
freedom and combining it with the transformation used for
nonconstant density of states [4].
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FIG. 4 (color online). The differential conductance G as func-
tion of the bias voltage for different temperatures. Parameters
R � 10, �f � �1:5, and U � 12.
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