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Fluctuations and Correlations of Pure Quantum Turbulence in Superfluid He-B
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We describe the first measurements of line-density fluctuations and spatial correlations of quantum
turbulence in superfluid *He-B. All of the measurements are performed in the low-temperature regime,
where the normal-fluid density is negligible. The quantum turbulence is generated by a vibrating grid. The
vortex-line density is found to have large length-scale correlations, indicating large-scale collective
motion of vortices. Furthermore, we find that the power spectrum of fluctuations versus frequency obeys a
—5/3 power law which verifies recent speculations that this behavior is a generic feature of fully
developed quantum turbulence, reminiscent of the Kolmogorov spectrum for velocity fluctuations in

classical turbulence.
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Superfluid turbulence has received a great deal of ex-
perimental and theoretical interest in recent years [1].
While much is known about superfluid turbulence in “He
at relatively high temperatures [2], it is particularly inter-
esting to investigate what happens in the 7 = 0 limit where
there is no normal fluid. A pure superfluid approximates
well to an ideal incompressible, inviscid, irrotational fluid,
and quantum turbulence is a tangle of quantized vortex
lines which defines superfluid flow. Given access to such a
simplified system, one can start to address fundamental
questions concerning the nature of superfluid turbulence,
the decay processes, links to classical turbulence, etc., with
a hope that quantum turbulence may teach us more about
turbulence in general. In recent years, we have developed
the experimental techniques to address these questions in
superfluid *He-B [3—8]. To date, most work on superfluid
turbulence has concentrated on time-averaged quantities
such as the vortex-line density. However, as with classical
turbulence, far more detailed information may be revealed
by investigating fluctuations. Here we describe the first
experimental study of turbulent fluctuations in a pure
superfluid, in the low-temperature limit.

Most of our current understanding of superfluid turbu-
lence has derived from experiments in *He at relatively
high temperatures. In this case, mutual friction strongly
couples the flow fields of the normal and superfluid com-
ponents [2]. The ensuing combined normal-superfluid tur-
bulence has close links with classical turbulence. In
classical turbulence, energy flows from large length scales,
which carry most of the turbulent energy, to smaller length
scales (or large wave numbers k), where viscous dissipa-
tion occurs, a process known as the Richardson cascade.
The resulting energy spectrum is described by the
Kolmogorov law E(k) = €2/3k=5/3, where € = vw? is the
dissipation rate per unit mass, v the kinematic viscosity,
and w the vorticity. This spectrum has been confirmed for
superfluid turbulence in “He at relatively high temperatures
by measurements of local pressure fluctuations in the
turbulent flow between counterrotating disks [9]. The mea-
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sured spectra were virtually identical for the normal and
superfluid phases. Further evidence for the Richardson
cascade in superfluid “He turbulence is obtained from its
decay. This has been measured for a towed grid using
second-sound techniques [10,11] and, more recently, it
was measured over a wide temperature range in a rotating
cryostat by ion trapping techniques [12]. Assuming that the
inferred vortex-line density L relates to the vorticity via
w = kL, where « is the circulation quantum, the decay can
be quantitatively explained by a Richardson cascade taking
an effective value for the kinematic viscosity [10—12].

In contrast to “*He, the viscosity of normal *He is so high
that turbulence develops in the superfluid only at tempera-
tures low enough that the falling mutual friction begins to
decouple the normal-fluid component [13]. At these inter-
mediate temperatures, since the normal fluid is effectively
clamped to the cell walls and mutual friction operates over
all length scales, we might expect the energy spectrum of
superfluid turbulence to differ substantially from the
Kolmogorov law [14]. However, at the very low tempera-
tures of this work, the excitation gas is so tenuous that
quasiparticle-quasiparticle scattering is completely absent.
Here the concept of a normal-fluid component breaks
down, and the turbulence becomes a function of the super-
fluid alone.

Paradoxically, the few remaining ballistic excitations
provide an excellent probe of the superfluid flow field.
The quasiparticle dispersion curve E(p) is tied to the
reference frame of the superfluid and thus becomes tilted
by the Galilean transformation E(p) — E(p) + p - vy in a
superfluid moving with velocity vg. Consequently, the flow
acts as a potential. Thus quasiparticles incident on a region
of superflow may experience a potential energy barrier and
will be Andreev-reflected if they have insufficient energy
to proceed [15]. The Andreev process converts a quasipar-
ticle into a quasihole and vice versa, reversing the group
velocity but with negligible momentum transfer. The cross
section for Andreev reflection of quasiparticle excitations
from the flow field around vortex lines is very large [6,16],
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so the complex flow field associated with superfluid turbu-
lence will Andreev-reflect a significant fraction of the
incident excitations.

We can readily detect quasiparticle excitations in 3He-B
at low temperatures by vibrating-wire techniques
[15,17,18]. The thermal damping of a vibrating wire arises
from the normal scattering of excitations at the wire sur-
face [18—21]. A wire immersed in turbulence thus experi-
ences a reduction in damping proportional to the fraction of
incident excitations which are Andreev-reflected by the
turbulent flow. This effect has been exploited to observe
turbulence generated by vibrating wires [3,5,6] and vibrat-
ing grids [7,8].

The experimental arrangement is shown in the inset in
Fig. 2 and is identical to that used for the measurements
reported previously [4,7,8]. Vortices generated by the grid
are detected by the two facing vibrating-wire resonators: a
“near”” wire, | mm from the grid, and a “far’’ wire, 2 mm
from the grid. There is also a remote ‘‘thermometer’’ wire,
not shown in the figure. Briefly, the damping of the two
detectors and the thermometer wire are continuously moni-
tored, while the grid is driven to a certain velocity ampli-
tude, generating vortex lines. At low grid velocities,
ballistic vortex rings are emitted, and turbulence forms
only above a certain critical grid velocity ~3.5 mms™!,
from ring collisions and recombination [7]. The vortices
Andreev-reflect some of the quasiparticles approaching the
detector wires, giving rise to a reduced damping from
which the vortex-line density L can be inferred [8]. In
the following, we discuss fluctuations JSL(f) =
L(r) — (L). For the data presented here, the time-averaged
line density (L) lies between 107 and 10® m~2. All of the
data were taken at 12 bar and at temperatures below 0.27,
where the normal-fluid fraction is negligible.

In Fig. 1, we show the measured fluctuations in the line
density SL(z) for the near and far wires for quantum
turbulence generated by the grid driven at 5.6 mms™!
(curves A and B in the figure) and the equivalent noise
level (curve C) obtained in the absence of turbulence while
the grid is stationary. The turbulent fluctuations are easily
resolved, and it is clear from Fig. 1 that the dominant
fluctuations have time scales of the order of a few seconds
or more.

We can define the correlation between the signals from
the two detector wires as a function of the delay time At as
R1,2 = <5L1(t)5L2(t - At)>/ﬂ<5L%> <5L%>, where 5L1
and 6L, are the fluctuations in the vortex-line densities
inferred from the responses of the near and far detector
wires, respectively. The correlation corresponding to the
data of Fig. 1 is shown in Fig. 2 (note that Fig. 1 shows only
a small fraction ~3% of the full data sample used to
generate the curve in Fig. 2). There are two main points
to mention. First, there is a clear correlation peak, indicat-
ing that some part of the fluctuations is observed by both
wires. This is expected since the two wires do not measure
a local line density but rather an angular averaged projec-
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FIG. 1. The fluctuations in the line density for quantum
turbulence produced by the grid when driven at a constant
velocity amplitude of 5.6 mms~! producing a mean line density
(L) ~5 X% 10" m~2. Plots A and B show the fluctuations mea-
sured with the near and far detector wires, respectively. Plot C
shows the corresponding noise level in the absence of turbu-
lence, when the grid is stationary.

tion of the vortex lines onto the wire surfaces, so that a
local fluctuation in the line density can, in principle, affect
both detector wires but by differing amounts depending on
the relative locations. Second, the correlation peak maxi-
mum lies at a nonzero value of At; the fluctuations on the
far wire are delayed on average by ~3 seconds from the
corresponding fluctuations on the near wire. Since the
wires are ~1 mm apart, this suggests that (i) there is a
mean flow of the turbulence away from the grid with a
velocity of ~0.3 mms~! and (ii) there must be some
fluctuations that are long-lived on the scale of seconds
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FIG. 2. The correlation between the fluctuations in the line
density measured by the two wire resonators, 1 mm apart, while
the grid is driven at a velocity amplitude of 5.6 mms~!. The top
right inset shows the experimental arrangement. The top left
inset shows a time-expanded view of the correlations at short
time intervals.
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(this is verified by the power spectra discussed below). The
correlation peak is very broad which gives a large uncer-
tainty on our measurement of Az, and we are unable
resolve any dependence on the grid velocity. The broad
peak is not surprising since the Richardson cascade model,
describing the decay behavior [8], predicts a fluctuating
large-scale flow velocity of the order of 1 mms™!, some-
what larger than the mean flow. We further note that the
mean flow implies some polarization of the vortex tangle,
with the vortex-line curvature biased towards the plane of
the grid face.

In Fig. 3, we show the power spectrum of the fluctua-
tions as a function of frequency f for the near wire, for
various grid velocities. The far wire displays similar be-
havior. The lowest curve corresponds to the electrical noise
of the measurement devices, obtained when the grid is
stationary. The noise level decreases above ~3 Hz due to
the time constant of the measuring system. The wires
detect ballistic vortex rings at the lowest grid velocity
(2.8 mms™!) and quantum turbulence at the higher grid
velocities [7]. The power spectra for the two regimes are
markedly different, and there is a sharp transition between
them. For quantum turbulence, the power spectra show a
733 dependence above about 0.1 Hz (the error bar on the
exponent is roughly 10%), flattening off at lower frequen-
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FIG. 3. Frequency power spectrum |L(f)|? of the line-density
fluctuations measured by the near wire for various grid velocities
as shown. The spectrum is defined such that its integral over the
whole frequency range is equal to the mean square fluctuation.
For clarity, the data for the higher grid velocities are displaced by
factors of 4 as indicated. In the shaded region, the spectrum is
not visible above the noise. The inset shows data scaled by f5/3
(after subtracting the background noise level) to indicate more
clearly the —5/3 power-law behavior for quantum turbulence.

cies. For vortex rings, the behavior is closer to a f~! power
law.

It is tempting to use the mean flow v inferred from Fig. 1
to convert the frequencies in the turbulence spectra into
wave numbers 277f/v or wavelengths v/f to give the
relevant length scales. If we do this using v~
0.3 mms~!, then the associated length scale varies from
a few millimeters at the start of the f~%3 power-law
behavior down to about 0.1 mm at the point where the
signal merges with the background noise level. Although
the correspondence between frequency and length scale is
questionable when the mean flow is relatively small, this
range of length scales coincides well with the expected
inertial range of length scales where the Richardson cas-
cade operates, i.e., from the largest scale given by size of
the turbulent region to the mean intervortex spacing.

Recent measurements of fluctuations in the line density
for superfluid turbulence in “*He have been made with
second-sound techniques at relatively high temperatures
[22]. The measured power spectra are remarkably similar
with the same f~%/3 dependence, despite the comparison of
two very different superfluids in opposite temperature
regimes (the experiments in “He were performed with a
significant normal-fluid component). This reveals a very
important result; the behavior of quantum turbulence in the
low-temperature limit (as inferred from large length or
time scale fluctuations) is very similar to the combined
superfluid—normal-fluid turbulence measured in “He at
high temperatures. Since the existence of a Kolmogorov
spectrum is directly confirmed for superfluid turbulence in
“He at high temperatures [9], this constitutes compelling
experimental evidence that the Kolmogorov spectrum con-
tinues to hold in the 7 = 0 limit.

Further experimental evidence for the Richardson
cascade and the Kolmogorov spectrum in the zero-
temperature limit is gained from computer simulations
[23] and from measurements of the decay of turbulence
[8,12]. As we have shown previously [8], the decay of the
turbulence in our experiments is in good agreement with
the classical model with an effective kinematic viscosity
given by ~0.2«. The effective kinematic viscosity is very
similar to that obtained from measurements in superfluid
“He at high temperatures [10—12]. However, the effective
kinematic viscosity has recently been found to undergo a
sharp transition to a much lower value in superfluid “He at
low temperatures [12]. It has been suggested [24,25] that
this behavior could arise from a “‘bottleneck” in the energy
cascade process, linking the classical-like behavior at
length scales larger than the intervortex spacing to a
Kelvin-wave cascade which transports energy to much
smaller length scales where it is ultimately dissipated. It
is interesting to investigate why the effective kinematic
viscosities at low temperatures appear to be so different in
the two superfluids. We note that the ultimate energy
dissipation process in superfluid He must involve quasi-
particle production from the vortex cores. Owing to the
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much larger core size and lower energy scales, dissipation
should set in at much lower frequencies in superfluid *He
compared to phonon emission by Kelvin waves in super-
fluid *He. With a little further development, it should be
possible to extend measurements of quantum turbulent
fluctuations in superfluid *He to higher frequencies where
the dissipation mechanism might be probed directly.

The f~%/3 power law in the measured line-density power
spectrum is reminiscent of the Kolmogorov law. However,
the interpretation is not straightforward, as was noted in the
earlier “He work [22]. In order to link quantum and clas-
sical turbulence, it is generally assumed that the line den-
sity provides a measure of the mean vorticity via w = «L.
However, in classical turbulence, the mean vorticity has a
frequency spectrum which is much flatter than the —5/3
power law revealed in Fig. 3. A possible explanation was
recently proposed [26], where it is argued that the line
density can be decomposed into two components. A small
polarized component contains the majority of the turbulent
energy and controls the large-scale flow which has the
Kolmogorov spectrum. The larger unpolarized component,
which dominates the line-density measurement, is swept
passively along by this flow, which then leads to the
observed —5/3 power law. Our measurements confirm
that this dependence exists even in the absence of a
normal-fluid component and thus supports the idea that
the —5/3 power-law behavior of line-density fluctuations
is a signature of the quantum nature of superfluid turbu-
lence [26].

In conclusion, we describe the first measurements of
fluctuations in quantum turbulence in the zero-temperature
limit. The turbulence exhibits fluctuations and large-scale
correlations consistent with the classical Richardson cas-
cade in which energy flows through an inertial range ex-
tending from the largest length scales to the smallest scales
where dissipation occurs. The power spectrum of the line-
density fluctuations displays the same —5/3 power-law
behavior as that observed in superfluid “He at relatively
high temperatures, suggesting that this is a universal prop-
erty of superfluid turbulence. Fluctuations are a key feature
of all turbulent systems, and we now have the experimental
techniques to study quantum turbulence fluctuations in
detail. We should also point out that, since the vortices
here are quantized, the line density of the vortex cores
which we measure is a very well-defined quantity com-
pared with many other probes of turbulent behavior. The
relative simplicity of quantum turbulence combined with
its strong similarities to classical turbulence makes it an
intriguing system to provide a better understanding of
turbulence in general.
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