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It is shown that the inverse of the ghost form factor in the Hamilton approach to Yang-Mills theory in
Coulomb gauge can be interpreted as the color dielectric function of the QCD vacuum. Furthermore, the
horizon condition to the ghost form factor implies that in the infrared the QCD vacuum is a perfect color
diaelectric medium and therefore a dual superconductor. The dielectric function is explicitly calculated
within a previously developed variational approach, using a specific ansatz for the vacuum wave
functional.
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Introduction.—Soon after the discovery of QCD, it was
realized that due to the confinement of color charges the
QCD vacuum must behave like a perfect (or nearly perfect)
color diaelectric medium [1]. This picture is also realized
in the Massachusetts Institute of Technology bag model [2]
or the Stanford Linear Accelerator Center bag model [3].
However, so far, no real attempt has been undertaken to
calculate the color dielectric function of the QCD vacuum
from the underlying theory. Obviously, such calculations of
vacuum properties have to be nonperturbative.

The QCD vacuum and, in particular, the confinement
mechanism have been subject to intensive studies, from
which several pictures of confinement have emerged such
as the dual Meissner effect [4], center vortex condensation
[5,6], or the Gribov-Zwanziger confinement mechanism
[7,8]. Although there is evidence from lattice calculations
that the various confinement pictures—in particular, the
first two—are related, no direct connection between these
pictures have been established so far. In the present Letter,
I show that the Gribov-Zwanziger confinement scenario in
the Coulomb gauge implies the dual superconductor. This
connection is based on the observation made that the
inverse of the ghost form factor in the Coulomb gauge
represents the dielectric function of the Yang-Mills
vacuum.

Recently, progress has been made in determining the
Yang-Mills vacuum wave functional by a variational solu-
tion of the Yang-Mills Schrödinger equation in the
Coulomb gauge [9,10]. The infrared properties calculated
with the wave functional obtained in Refs. [10–12] show
clear signals of confinement: an infrared divergent gluon
energy, a linearly rising static quark potential, and a pe-
rimeter law for the ’t Hooft loop [13]. Therefore, we may
expect that the variationally determined vacuum wave
functional contains the essential infrared physics of the
Yang-Mills vacuum. In the present Letter, I shall use this
wave functional to explicitly calculate the dielectric func-
tion of the QCD vacuum. I will first identify the dielectric
function in the Hamilton approach in the Coulomb gauge
and discuss some of its general properties, which do not
rely on the variational approach. After that, I will present

the numerical results for this quantity obtained by using the
wave functional determined in Ref. [11].

The Hamilton approach to Yang-Mills theory in the
Coulomb gauge.—Consider the Hamilton formulation of
Yang-Mills theory in the Weyl gauge Aa0�x� � 0. The
electric field Eai represents the momentum conjugate to
the spatial components of the gauge field Aai . In the ca-
nonical quantization, the electric field is replaced by the
momentum operator �a

i �x� �
1
i

�
�Aai �x�

, and the Yang-Mills

Hamiltonian reads

 H �
1

2

Z
d3x��2�x� �B2�x��; (1)

where Bai is a non-Abelian magnetic field.
In the Weyl gauge, Gauss’s law is lost from the equation

of motion and has to be imposed as a constraint to the wave
functional

 D̂ ab
i �b

i �x�j i � g�a�x�j i: (2)

Here D̂ab
i � �ab@i � gÂ

ab
i , Âab � facbAc is the covariant

derivative in the adjoint representation of the gauge group
(fabc being the structure constant of the gauge group and g
being the coupling constant), and �a�x� denotes the ‘‘ex-
ternal’’ color charge density of the matter fields. The
operator on the left-hand side of Eq. (2) is the generator
of time-independent gauge transformations, and thus
Gauss’s law expresses the gauge invariance of the wave
functional.

Instead of working with gauge-invariant wave function-
als, it is more convenient to explicitly resolve Gauss’s law
by fixing the gauge. For this purpose, the Coulomb gauge
@Aa � 0 is a particularly convenient gauge, which will be
used in the following. In the Coulomb gauge, only the
transversal components of the gauge field A � A? are
left. Splitting the momentum operator in longitudinal and
transversal parts � � �jj ��? and �? �

1
i �=�A

a
?, re-

spectively, Gauss’s law can be solved for the longitudinal
part yielding

 � kj i � �g@��D̂@��1��� �g�j i; (3)

PRL 101, 061602 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 AUGUST 2008

0031-9007=08=101(6)=061602(4) 061602-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.061602


where �ag � �Â
ab
?i�

b
?i is the color charge density of the

gauge bosons and ��D̂@� is the Faddeev-Popov kernel in
the Coulomb gauge.

We are interested in the electric field which in the
quantum theory is defined as the expectation value of the
corresponding (momentum) operator

 E � h�i � h�k ��?i: (4)

The vacuum wave functional can be assumed to be invari-
ant with respect to the transformation A? ! �A?, imply-
ing that h�?i � 0. With this result, we obtain from Eq. (3)
for the electric field

 E � h�ki � �@�gh��D̂@��1i�� gh��D̂@��1�gi�:

(5)

Here the first term represents the response of the Yang-
Mills vacuum to the presence of the external color charges
�a�x�. In the absence of external color charges �a�x� � 0,
the Yang-Mills vacuum should not contain any observable
color electric field, i.e., h�i��0 � 0, from which we can
conclude that the second term in Eq. (5) vanishes in the
Yang-Mills vacuum state. The color electric field generated
by external color charges �a�x� is therefore given by

 E a�x� � �@x
Z
d3x0Gab�x; x0��b�x0�; (6)

where

 Gab�x; x0� � h��D̂@��1i�x; x0� (7)

is the ghost propagator. Let us emphasize that Eq. (6) has
exactly the same structure as the electric field generated by
an ordinary electric charge density ��x� in classical elec-
trodynamics

 E �x� � �@x
Z
d3x0hxj�����1jx0i��x0�

� �@x
Z
d3x0

��x0�
4�jx� x0j

(8)

except that the Green function of the Laplacian is replaced
by the ghost propagator [14].

The dielectric function.—The ghost propagator [Eq. (7)]
is a property of the Yang-Mills vacuum (and does not
depend on the external charges). By global color invariance
of the Yang-Mills vacuum, this propagator has to be color-
diagonal. Furthermore, by translational invariance of the
Yang-Mills vacuum, Gab�x; x0� depends only on jx� x0j.
In momentum space, the ghost propagator has therefore the
following form:

 gGab�k� � �ab
d�k�

k2 : (9)

Here we have introduced the ghost form factor d�k�, which
describes the deviations of the ghost propagator from the
Green function of the Laplacian; i.e., it embodies all of the
deviations of the Yang-Mills vacuum from the QED case.

With (9), we find from Eq. (6) for the electric field in
momentum space

 E a�k� � �ik
d�k�

k2 �a�k�; (10)

where Ea�k� and �a�k� denote the Fourier transform of
Ea�x� and �a�x�, respectively. Equation (10) should be
compared with the expression for the ordinary electric field
in a medium

 E �k� � �ik
1

��k�k2 ��k�; (11)

where ��k� is the (generalized) dielectric function [15] and
��k� the Fourier transform of the electric charge density.
By comparing Eqs. (10) and (11), we can identify the
inverse of the ghost form factor as the dielectric function
of the Yang-Mills vacuum

 ��k� � d�1�k�: (12)

In QED, the Faddeev-Popov kernel of the Coulomb gauge
is given by the Laplacian, and the ghost form factor is
d�k� � 1, so that ��k� � 1 in the QED vacuum, as
expected.

On general grounds, one expects that the ghost form
factor in QCD is infrared divergent

 d�1�k � 0� � 0: (13)

This is the so-called horizon condition, which is required
for confinement in the Gribov-Zwanziger confinement
scenario [7,8]. By this condition the dielectric function of
the Yang-Mills vacuum (12) vanishes in the infrared

 ��x � 0� � 0; (14)

and hence the Yang-Mills vacuum is a perfect color dia-
electric medium.

A perfect color diaelectric medium � � 0 is nothing but
a dual superconductor (where dual refers to an interchange
of electric and magnetic fields and charges). Recall that in
an ordinary superconductor the magnetic permeability
vanishes� � 0, and, consequently, in a dual superconduc-
tor � � 0. We thus observe that the Gribov-Zwanziger
confinement scenario is consistent with the dual Meissner
effect proposed as a possible confinement scenario [4,16]
and supported by lattice calculations [17].

Let us emphasize that the ghost propagator, by defini-
tion, depends on the gauge chosen, and only the ghost form
factor of the Coulomb gauge is directly related to the
dielectric function by Eq. (12).

The ghost form factor d�k� has been explicitly calculated
in the variational solution of the Yang-Mills Schrödinger
equation in the Coulomb gauge [10,11]. Figure 1 shows the
result for the dielectric function (12) obtained from the
solutions to the Dyson-Schwinger equations reported in
Ref. [11]. It has the expected behavior: At zero momentum
it vanishes by the horizon condition, while for k! 1 it
diverges logarithmically due to the anomalous dimension
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of the ghost propagator. This behavior of ��k� � d�1�k� is
a manifestation of antiscreening in Yang-Mills theory.
(Ordinary Debye screening, which turns the Coulomb
potential into a Yukawa potential, produces a dielectric
function

 ��k� �
m2 � k2

k2 ; (15)

where m is the inverse screening distance. This dielectric
function is divergent at k! 0 and approaches the QED
vacuum value � � 1 for k! 1.)

Let us emphasize that the vanishing of the dielectric
function in the infrared is a consequence of the horizon
condition (13), which is an intrinsic feature of the Gribov-
Zwanziger confinement mechanism. This condition has
been imposed on the solution to the Dyson-Schwinger
equations following from the variational approach
[10,11]. While in D � 3� 1, in principle, solutions to
these equations with an infrared finite ghost form factor
can be found [18], in D � 2� 1 these equations allow
only for solutions satisfying the horizon condition [12].
The ghost form factor in the Coulomb gauge has also been
calculated on the lattice in both D � 3� 1 [19,20] and
D � 2� 1 [21]. Unfortunately, the lattices used so far in
D � 3� 1 are not large enough to really penetrate the
infrared regime k <

����
�
p

(�-string tension). In the momen-
tum regime where reliable lattice data are available, there
is a reasonable agreement between lattice data [20,21] and
the continuum results [10–12]. This refers, in particular, to
D � 2� 1 dimensions, where larger lattices can be used.
The 2� 1-dimensional lattice calculations [21] give strong
evidence for an infrared divergent ghost form factor and
are in quite satisfactory agreement with the continuum
results [12].

In the Zwanziger-Gribov confinement scenario, the ho-
rizon condition is understood to arise from the field con-
figuration on or near the Gribov horizon, where the

Faddeev-Popov kernel develops a zero eigenvalue. One
can show analytically [22] that, in the Landau as well as
the Coulomb gauge, center vortices and magnetic mono-
poles lie on the Gribov horizon. The latter configurations
are responsible for the dual Meissner effect. Furthermore,
when the center vortex configurations are removed from
the Yang-Mills lattice ensemble [22,23], the infrared sin-
gular behavior of the ghost from factor is lost. In this sense,
the Gribov-Zwanziger confinement scenario not only im-
plies the dual Meissner effect but is also linked to the
center vortex condensation picture of confinement.

Conclusions.—I have shown that the ghost form factor
in the Hamilton approach to Yang-Mills theory in the
Coulomb gauge can be interpreted as the inverse of the
dielectric function of the Yang-Mills vacuum. Conse-
quently, the horizon condition, a necessary requirement
for the Gribov-Zwanziger confinement scenario, implies
that in the infrared the Yang-Mills vacuum behaves like a
perfect color diaelectric medium, which, in fact, represents
a dual superconductor. In this way I have shown that the
Gribov-Zwanziger confinement scenario implies the dual
Meissner effect.
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FIG. 1. The dielectric function ��k� (12) of the Yang-Mills
vacuum calculated in the variational approach [10] using the
solution of the Dyson-Schwinger equations reported in Ref. [11].
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