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In this Letter, I point out that there is a curvature singularity problem appearing on the nonlinear level
that generally plagues f�R�models that modify Einstein gravity in the infrared. It is caused by the fact that
for the effective scalar degree of freedom, the curvature singularity is at a finite field value and energy
level, and can be easily accessed by the field dynamics in the presence of matter. This problem is invisible
in a linearized analysis, except for the telltale growing oscillatory modes it causes. In view of this, the
viability of many f�R� models in the current literature will have to be reevaluated.
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What is causing the observed accelerated expansion of
the Universe today is one of the biggest open questions in
modern cosmology. Trying to explain it by modifying the
theory of gravity rather than by introducing a mysterious
dark energy component has been a popular pursuit as of
late. Unfortunately, it is proving to be a rather difficult
thing to do consistently while avoiding a variety of strin-
gent observational tests of gravity we have at our disposal.
A class of such models that received much attention re-
cently is the one that modifies the Einstein-Hilbert gravi-
tational action by replacing Ricci curvature scalar by an
arbitrary function of the curvature

 S �
Z � f�R�

16�G
�Lm

� �������
�g
p

d4x: (1)

Introduced in cosmological context for the case which
modifies gravity in the high energy limit in a seminal paper
by Starobinsky [1] and studied in [2–4], this model has
later been adopted for infrared modifications of gravity as
well [5,6]. For the latter application, it turned out to be not
without problems. Certain constraints have to be imposed
on function f�R� for the model to be linearly stable [7] and
cosmologically viable [8–10]. The first attempts failed
these constraints right away, but since then, models that
evade them have been found (for example, see [11–13] and
references therein) and enough trust has been placed in
their viability to study cosmological structure formation in
detail [14,15].

In this Letter, I point out a serious curvature singularity
problem that affects many, if not all, infrared-modified
f�R� models. Being nonlinear in nature, it has escaped
scrutiny so far.

As it is well known, a new scalar degree of freedom
appears in f�R� gravity that is not there in Einstein theory
(sometimes dubbed the scalaron). Conformal transforma-
tion of the metric can be employed to make it explicit in the
action [3,4]. In this Letter, I will avoid doing that to keep
the usual matter coupling to the metric, and work with the
action (1) directly. Variation with respect to metric yields
gravitational equations of motion

 f0R�� � f
0
;�� �

�
�f0 �

1

2
f
�
g�� � 8�GT��; (2)

where prime (0) denotes the derivative of the function f
with respect to its argument R, and � is the usual notation
for covariant D’Alembert operator � � r�r

�. The equa-
tion of motion for a new scalar degree of freedom is given
by the trace of Eq. (2)

 �f0 �
1

3
�2f� f0R� �

8�G
3

T: (3)

Identifying the scalar degree of freedom explicitly by a
variable redefinition � � f0 � 1, the above equation is
cast in the form of equation of motion of a canonical
dimensionless scalar field � with a potential V and a force
term F

 �� � V 0��� �F : (4)

The effective scalar field potential V��� is determined by

 V 0��� �
dV
d�
�

1

3
�2f� f0R� (5)

expressed in terms of the scalar variable �. In practice,
given f�R�, it is usually difficult to invert the definition of
the scalar degree of freedom explicitly, so it might be more
convenient to determine effective potential V in a para-
metric form instead. By integrating

 

dV
dR
�
dV
d�

d�
dR
�

1

3
�2f� f0R�f00; (6)

potential V��� is then given by a pair of functions
f��R�; V�R�g. The force term F that drives the scalar field
� is a trace of the stress-energy tensor T, which for perfect
fluid is simply F � �8�G=3���� 3p�.

Let us consider a homogeneous cosmological model in
f�R� gravity, with the usual complement of matter fields.
Expansion of the Universe is described by a flat Friedman-
Robertson-Walker metric

 ds2 � �dt2 � a2�t�dx2; (7)
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and the scalar gravitational degree of freedom � obeys a
usual scalar field equation, albeit with a force term on the
right-hand side

 

��� 3H _�� V 0��� � F : (8)

The analog of Friedmann equation in f�R� cosmology is
not so transparent. Let us consider the tt component of
gravitational equations of motion (2). For metric (7), it is

 3H�f0�: � 3
�a
a
f0 �

1

2
f � 8�G�: (9)

Note that unlike the usual Friedmann equation, higher
derivatives of scale factor a appear. Second derivative �a
is written out explicitly, and a third derivative is hiding in a
time derivative of f0 term, which itself contains Ricci
curvature, and hence �a. Seeing a second derivative of the
scale factor, one might be tempted to treat the above Eq. (9)
as a dynamical evolution equation for the scale factor.
Doing so, however, is not a very good idea. For small
deviations from Einstein gravity, the coefficient in front
of �a goes degenerate, and Eq. (9) does not have a good
limit determining �a (which is not all that surprising, con-
sidering that the Friedmann equation in Einstein gravity
does not constrain �a directly). To get a proper limit, let us
instead get rid of �a in favor of the curvature scalar R �
6� �a=a� _a2=a2�. After that is done, Eq. (9) becomes

 H2 � �lnf0�:H�
1

6

f� f0R
f0

�
8�G
3f0

�; (10)

and its role as a constraint equation is revealed. In the limit
of Einstein gravity, f0 ! 1, and so the last two terms on the
left-hand side disappear, and one is left with the usual
Friedmann equation. In the general case, the extra terms
are functions of scalar degree of freedom � and its first
time derivative. No higher derivatives appear in this equa-
tion anymore.

Thus, the following simple picture of dynamics in the
f�R� cosmology emerges. Above the infrared modification
scale R0, the expansion rate of the Universe is set primarily
by the matter density, just like in the usual cosmology, with
small corrections. Only once the local curvature drops
below R0, the expansion rate starts feeling the effect of
gravity modification. The spacetime curvature, on the other
hand, is controlled by the scalar degree of freedom �
which gravity acquires. It obeys the usual scalar field
Eq. (8) with potential V���, the shape of which is directly
determined by function f�R�, and a driving term from the
trace of matter stress-energy tensor.

But here is the problem: it turns out that precisely those
functions f�R� that lead to Einstein-like gravity action in
the large curvature regime, yield a potential V with an
unprotected curvature singularity.

As a case in point, consider Starobinsky’s disappearing
cosmological constant model [12], which has been very
carefully constructed and avoids all known linear instabil-

ities. It is described by

 f�R� � R� ���1� R2��n � 1�; (11)

where I have taken a liberty to absorb the crossover curva-
ture scale R0 into rescaling of coordinates (which become
dimensionless and are measured in length units corre-
sponding to R0). For definiteness, let us take n � 1. The
scalar degree of freedom in this model is given by

 � � �
2�R

�1� R2�2
(12)

in terms of curvature, so large curvature limit R! 	1
corresponds to � � 0. Flat spacetime with R � 0 also
corresponds to � � 0, which gives us a hint that the
potential is going to be a multivalued function. The poten-
tial can be evaluated by integrating (6); up to an arbitrary
constant, it is

 V �
�2R�3� 11R2 � 21R4 � 3R6�

24�1� R2�4

�
�R2�1� R2 � R4 � R6�

3�1� R2�4
�
�2

8
arctanR: (13)

The effective scalar potential is plotted in Fig. 1 for � � 2,
and is indeed multivalued. Let us walk through the inter-
esting locations on this plot. Point A is a positive curvature
singularity R � �1. Point B is the stable de Sitter mini-
mum in this model, and point C is the unstable de Sitter
maximum; their curvatures depend on �. Point E corre-
sponds to a flat spacetime, which although a solution in this
model, is unstable. Points D and F are critical points with
f00 � 0 that occur at R � 	1=

���
3
p

; potential branches there.
Finally, point G is a negative curvature singularity R �
�1. Only the small part of this potential is actually
relevant for cosmological evolution from initial singularity
to today, and it lies in the arc AB, shaded blue in Fig. 1.

V / R o

D C

E

B
A

F

FIG. 1 (color online). Effective potential of a scalar degree of
freedom in f�R� gravity model (11) with � � 2 and n � 1.
Diamonds mark the location of critical points. The part relevant
to cosmological evolution is emphasized by the thick line.
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The most striking feature of the potential in Fig. 1, and
the core of the problem for infrared-modified f�R� models
is that curvature singularity at point A is a finite distance
away both in field and energy values from the place we are
supposed to live in. Scalar degree of freedom � directly
feels the matter distribution through the force term; for
equation of state w< 1=3, the force is directed to the right
and drives the field � up the wall toward point A and
infinite curvature. Characteristic scale of the potential V
is the crossover curvature scale R0, and hence of the same
order of magnitude as a present day cosmological constant,
which is exceedingly low compared to matter densities we
encounter every day. Given the scales involved, it appears
to be quite easy to overdrive the scalar degree of freedom
and make it ‘‘jump out’’ of the potential well by doing
simple manipulations with normal matter (say a pile of
dust), which would cause catastrophic curvature singular-
ity. Needless to say, if this were to happen, it would not
make for a desirable (or even viable) model. Similarly, but
less dramatically, matter with sufficiently stiff equation of
state can destabilize the model by driving the field to the
left past the unstable point C.

The presence of the curvature singularity a finite dis-
tance away is extremely disturbing by itself, but let us
examine more carefully if it is reached by physically
reasonable solutions. Inside a constant density matter dis-
tribution, one can think of a (constant) force term F as
coming from a linear field potential F ��
 ��� instead,
and introduce a new ‘‘in matter’’ effective potential

 U��� � V��� �F ��
 ���; (14)

where �
 denotes the asymptotic de Sitter vacuum field.
The comparison between the two potentials V and U for
F � R0 is shown in the Fig. 2. As you can see, addition of
matter slopes the potential U, shifts the (stable) minimum
to the right but makes it more shallow, and lowers the

curvature singularity point X. The density needed to
make the curvature singularity energetically accessible
from vacuum B is given by the ratio of potential barrier
�V � VA � VB to the scalar field value distance from
vacuum to singularity �� � �A ��B � ��
. It is of
the same order as the density of dark energy today, with
a numerical factor which depends on the model. So for a
vast majority of physical solutions with matter, the curva-
ture singularity is energetically accessible from asymptotic
de Sitter vacuum, and the potential minimum is so close to
curvature singularity that it would be invisible if actually
plotted to scale.

Energetical accessibility of the curvature singularity
causes problems. For example, if one takes a cosmological
solution approaching dark energy domination today and
traces it back into the past, one is very likely to encounter a
curvature singularity. This has been noticed numerically
[16,17], but the underlying reasons for it and the extent of
the damage were not fully realized. It is also most likely the
cause of growing oscillatory curvature modes [12] which
signal the breakdown of linear expansion due to closeness
of potential minimum to curvature singularity. Although a
more detailed analysis of the approach to singularity is in
order, from Eq. (10), it appears that the singularity occurs
at finite redshift, density and expansion rate and is driven
by the divergence of the second derivative of the scale
factor �a (which would make it rather weak, but a singu-
larity nonetheless).

Although I focused on cosmology so far, perhaps a more
deadly argument against having a curvature singularity at
finite distance in the field space comes from considering a
gravitational field of a static dense compact object (like a
neutron star). Although the exact nonlinear solution of this
problem is more complicated to analyze [18,19] and is
beyond the scope of this Letter, I can give a very simple
estimate if the problem occurs. As we have seen, the
energetics of the scalar gravitational degree of freedom
are by far dominated by the matter driving term. If we
discard the contribution of nonlinear potential V (which is
negligible everywhere except maybe very close to singu-
larity at � � 0 for compact object), the equation for gravi-
tational field of a static matter distributions becomes a
simple Laplace equation

 �� � �
8�
3
G�: (15)

Comparing this with an equation for Newtonian gravita-
tional potential

 �� � 4�G�; (16)

we get a simple estimate � � �
 � 2�=3 for the excita-
tion of scalar gravitational degree of freedom � in f�R�
gravity in terms of Newtonian potential well depth � of the
compact object, where �
 is the asymptotic value of � at
infinity, i.e., the minimum value �B � ���. But unlike
Newtonian potential �, which has to diverge to cause

V / R o

B

X

A

FIG. 2 (color online). Adding matter destabilizes the vacuum.
Although effective potential inside constant density matter dis-
tribution still has a minimum, it is very shallow and cannot
protect the field � from reaching curvature singularity X, which
becomes energetically accessible from asymptotic vacuum
state B.

PRL 101, 061103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 AUGUST 2008

061103-3



singularity or reach �1=2 to form a horizon, gravitational
degree of freedom � needs only to change by a (small)
amount �� from its vacuum value to create a singularity.
So unless an infrared-modified f�R� model leads to a
potential with curvature singularity separated from vacuum
by at least �� * 1=3, one would end up with a curvature
singularity without horizon in a compact astrophysical
object like a neutron star. This condition is rather easy to
violate unless special care is taken in model-building. For
example, for Starobinsky’s model (11) with n � 1 and � �
2 (as in Fig. 1) �� ’ 0:0874� 1=3, and is even smaller
for larger values of �, for which it decreases as ���
�2���2. Since in general one needs f0 > 0 for graviton
not to be a ghost, one would need �1<�
 & �1=3 to
avoid both problems, the prospects of achieving which
without fine-tuning do not look good.

This curvature singularity problem is in no way unique
to Starobinsky’s disappearing cosmological constant
model [12], which I have taken as an example simply
because it is one of the most carefully constructed models
so far. In fact, any infrared-modified f�R� gravity model
suffers from it. Let us consider arbitrary function f�R�, and
require that it reduces to Einstein gravity for large curva-
ture and has an analytic expansion

 f�R� � R���
1

R�
X1
n�0

�n

Rn
(17)

with a leading term�0=R
� (with �> 0). Then, the leading

terms for large R asymptotic behavior of scalar gravita-
tional degree of freedom and potential (6) are

 � ’ �
��0

R��1 ; V ’ const�
��� 1��0

3R�
: (18)

The value of� goes to zero in large curvature limit, and the
potential V has power law dependence on �

 V��� ’ const�
��� 1��0

3j��0j
	 j�j

	; 	 �
�

�� 1
; (19)

with exponent 	 valued between zero and one. Thus, the
values of both the field and the potential at curvature
singularity are finite for a generic f�R� infrared modifica-
tion of gravity which recovers Einstein gravity perturba-
tively in the large curvature limit. This means the
arguments I made above apply generically, and viability
of many f�R� models in current literature will have to be
reevaluated. At the very least, the bound for compact
objects will have to be satisfied for the model not to be
ruled out immediately. But even if the estimate I made here
looks safe, any infrared-modified f�R� models should be
scrutinized very closely for dangerous curvature singular-
ities that could be present. In a sense, infrared modification
of f�R� gravity forces one to confront the question of
ultraviolet completion of the theory.

Finally, let me comment on how this problem looks in
equivalent scalar-tensor theory formulation [3,4]. Con-

formal transformation to an Einstein frame with metric
dŝ2 � f0ds2 turns the scalar degree of freedom into a
canonically normalized scalar field  with potential

  �

���
2

3

s
lnf0; W� � �

1

2
e��4 =

��
6
p
��Rf0 � f�: (20)

The asymptotics of scalar degree of freedom in the Einstein
frame are very similar to the above story: the field  goes to
zero in large curvature limit, and the potential has the same
unprotected power law asymptotic W ’ a� bj j	. But
where did the singularity go? The answer is subtle: while
the conformal factor itself appears to be regular (f0 ! 1),
its second derivatives are not (potential derivative blows up
as j j	�1 in equation of motion), which can cause a
curvature singularity in the Jordan frame even if the
Einstein frame metric was regular.
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