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We present a method for optimizing quantum circuits architecture, based on the notion of a quantum
comb, which describes a circuit board where one can insert variable subcircuits. Unexplored quantum
processing tasks, such as cloning and storing or retrieving of gates, can be optimized, along with setups for
tomography and discrimination or estimation of quantum circuits.
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Quantum mechanics plays a crucial role in the technol-
ogy of high precision and high sensitivity, e.g., in fre-
quency standards [1], quantum lithography [2], two-
photon microscopy [3], clock synchronization [4], and
reference-frame transfer [5]. In these applications, the
problem is to achieve high precision in (i) determining
parameters and (ii) executing transformations that depend
on unknown parameters. Since the parameters are gener-
ally encoded by a transformation, as in the whole class of
quantum metrology problems [6], and since the estimation
itself can be considered as a special case of transformation
(with classical output), both tasks (i) and (ii) can be re-
duced to the general problem of executing a desired trans-
formation depending on an unknown transformation.
Taking into account the possibility of exploiting N uses
of the unknown transformation, the problem is to build a
quantum circuit that has N circuits as input, and achieves
the desired transformation as an output. This is what we
call a quantum circuit board.

A quantum circuit board is a network of gates in which
there are N slots with open ports for the insertion of N
variable subcircuits (see Fig. 1). Since generally it is
impossible even in principle to achieve the desired trans-
formation exactly, the main task here is to optimize the
circuit board according to a given figure of merit. A typical
example is the optimal cloning of an undisclosed trans-
formation U, which will be operated by a board with N
slotted uses of U, and achieving overall in-out transforma-
tion which is the closest possible to U�M with M>N. We
emphasize that generally the overall in-out transformation
of the board and of the slotted circuits can be of any kind,
including measurements and state-preparations, and the
slotted transformations can be different from each other.

In previous literature, the only case of circuit-board
optimization that has been considered is that of phase
estimation [7]. In other applications, such as discrimination
and estimation of unitary transformations with N uses,
optimization has been carried out only for fixed architec-
tures—i.e., with uses either in parallel [8,9], or in sequence
[10]—since no systematic optimization method for vari-
able architecture was available. On the other hand, the
problem of deriving the optimal circuit board for channel

tomography is still beyond the current possibilities of
available optimization approaches.

In this Letter, we present a complete method for opti-
mizing the architecture of quantum circuit boards. After
providing a convenient description of circuit connectivity,
we introduce the notion of quantum comb, which describes
all possible transformations operated by a quantum circuit
board, and generalizes the notion of quantum channel to
the case where the inputs are quantum circuits, rather than
quantum states. We then present the optimization method,
based on the convex structure of the set of quantum combs.
The method allows one to reduce the apparently untreat-
able problem of optimal circuit architecture to the optimi-
zation of a single positive operator with linear constraints.
Since the positive operator summarizes all the relevant fea-
tures of the circuit, our method automatically determines
the optimal causal disposition of the variable slots. We will
give several applications in which the present approach
dramatically simplifies the solution of the problem.

A quantum circuit operates a transformation from input
to output, and is graphically represented by a box with
input and output wires symbolizing the respective quantum
systems. Systems corresponding to different wires are
generally different, and may also vary from input to output.
Let us associate Hilbert spaces Hin (Hout) to all input (out-
put) wires, and denote by �in (�out) the corresponding
states. The action of the circuit is generally probabilistic;
i.e., different in-out transformations can randomly occur,
as in a measurement process. Each transformation is de-
scribed by a linear map �in ! C��in� � k�out, with the
proportionality factor 0 � k � Tr�C��in�� � 1 giving the
probability that C occurs on state �in. To describe a legiti-
mate quantum transformation, the map C:Lin�Hin� !
Lin�Hout� [11] has to be completely positive (CP) and trace

FIG. 1 (color online). A quantum circuit board.
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nonincreasing. Trace-preserving maps—i.e., deterministic
transformations—are called quantum channels. Notice
that a map C, rather than representing a specific circuit, is
univocally associated to the equivalence class of all circuits
performing the same in-out transformation.

The linear map C can be conveniently rewritten using the
so-called ‘‘Choi-Jamiołkowski’’ representation [12], corre-
sponding to the following one-to-one correspondence be-
tween linear maps C:Lin�Hin� ! Lin�Hout� and linear
operators C 2 Lin�Hout � Hin� given by

 C � Choi�C� :� C � I�j�ih�j�; (1)

 C ��� � Choi�1�C���� :� Trin��Iout � �T�C�; (2)

where I is the identity map, j�i is the un-normalized
maximally entangled state j�i �

P
njnijni 2 H�2

in , and T
denotes transposition with respect to the orthonormal basis
fjnig for Hin. The map C is CP if and only if the operator
C—called Choi operator—is positive [13].

Two quantum circuits can be connected in all the ways
allowed by the physical matchings between input and out-
put wires (see, e.g., Fig. 2, where the wires labeled d are
connected): a connection will result in the composition of
the corresponding CP maps, and hence of the correspond-
ing Choi operators. Since building a quantum network
means connecting many circuits, it is crucial to have a
handy way to describe circuit connectivity with minimum
overhead of notation. We provide here three simple rules
that accomplish this goal:

Rule 1 (Labelling) Each quantum wire is marked with a
different label, except for wires that are connected, which
are identified with the same label.

Rule 2 (Multiplication) The multiplication of two Choi
operators A 2 Lin�Ha;b;c;d� and B 2 Lin�Hd;e;f;g� is re-
garded in the tensor fashion, i.e., AB � �A � Ie;f;g��Ia;b;c �
B�.

Rule 3 (Composition) The connection of two circuits
with Choi operators A and B—acting on Hilbert spaces
labeled according to Rule 1—yields a new circuit with
Choi operator C given by the link product

 C � A 	 B � TrJ�A�JB�; (3)

�J denoting partial transposition over the Hilbert space J of

the connected wires, and the multiplication in square
brackets following Rule 2.

Rule 3 follows from Eqs. (1) and (2). Notice that due to
invariance of trace under cyclic permutations, the link
product is commutative: A 	 B � B 	 A. Using it, the ac-
tion of a linear map C on a state � in Eq. (2) can be
rewritten as C��� � C 	 �. Assembling many circuits C1,
C2; . . . ; Ck yields a quantum network whose Choi operator
is simply given by C � C1 	 C2 	 . . . 	 Ck.

We are now ready to treat quantum circuit boards. To
start with, we consider the case of a deterministic circuit
board, i.e., a network of quantum channels with N open
slots for the insertion of variable subcircuits. It is clear that
by reshuffling and stretching the internal wires, any circuit
board can be reshaped in the form of a ‘‘comb,’’ with an
ordered sequence of slots, each between two successive
teeth, as in Fig. 3. The order of the slots is the causal order
induced by the flow of quantum information in the circuit
board. We label the input systems (entering the board) with
even numbers 2n, and the corresponding output systems
(exiting the board) with odd numbers 2n
 1, with n
ranging from 0 to N.

A quantum comb with N slots is clearly equivalent to a
concatenation of N 
 1 channels with memory, which is in
turn equivalent to a causal network, namely, a network
where the quantum state of the output systems up to time
n does not depend on the state of the input systems at later
times n0 > n, with n, n0 2 f0; 1; . . . ; Ng [14]. The causal
network can be easily obtained by redrawing the comb as
an equivalent circuit with all inputs on the left and all
outputs on the right, as in Fig. 4. We define the Choi
operator of a quantum comb as the Choi operator R of
the corresponding causal network. In terms of the Choi
operator R, causality is equivalent to a set of linear con-
straints

 Tr 2n
1�R�n�� � I2n � R�n�1�; n � 0; . . .N;

R�N� � R; R��1� � 1;
(4)

where Tr2n
1 denotes the partial trace over the Hilbert

FIG. 2. Connection of two quantum circuits A and B. Wires
are labeled according to Rule 1. The Choi operator of the
resulting circuit C is given by the link product of Rule 3.

in−out

FIG. 3 (color online). Every circuit-board can be reshaped in
form of a ‘‘comb,’’ with an ordered sequence of slots, each
between two successive teeth. The pins represent quantum
systems, entering or exiting from the board (the horizontal arrow
represents the quantum information flow).
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space H2n
1 of the output wire labeled 2n
 1, I2n the
identity operator over the Hilbert space H2n of the input
wire labeled 2n, R�n� � Choi�C�n��, and C�n� is the map of
the (n
 1)-subnetwork from the first n
 1 inputs to the
first n
 1 outputs. Precisely, we have the following:

Theorem 1.—Every positive operator 0 � R 2
Lin��2N
1

j�0 Hj� satisfying the linear constraints (4), is the
Choi operator of a deterministic quantum comb.

Proof.—By definition, it is enough to show that any
operator R � 0 normalized as in Eq. (4) is the Choi opera-
tor of a causal network. A causal network with N 
 1
input/output pairs is described by a family of channels
C�n�, n � 0; 1; . . . ; N with the property Tr2n
1�C

�n����n��� �
C�n�1� (Tr2n���n��) for any state ��n� of the first n
 1 input
systems. Using the correspondence of Eq. (2), one can
easily see that this is equivalent to the normalization of
Eq. (4).

A quantum comb transforms a series of N input circuits
C1; . . . ; CN into an output circuit C0 depending on them
[Fig. 5(a)]. This transformation of circuits corresponds to
an N-linear CP-map that sends the input Choi operators
into the ouput Choi operator according to C0 � C1 	 . . . 	
CN 	 R, with R the Choi operator of the comb. We call the
mapping between circuits fC1; . . . ; CNg� C0 supermap as
it sends channels into channels, rather than states into
states. Notice that, depending on the number of slots that
are saturated, a quantum comb can transform a series of
circuits into a comb [Fig. 5(b)], or, more generally, a comb
into a comb [Fig. 5(c)]. A quantum comb can realize many
possible mappings, all obtained by different link products
with its Choi operator R. Therefore, the quantum comb can

be completely identified with its Choi operator. Remark-
ably, also the converse is true: any abstract supermap
sending channels into channels in a CP fashion can be
physically realized by a quantum comb [15].

The tools presented above provide a powerful method
for optimizing quantum circuit architecture. Suppose we
want to design a circuit-board maximizing some convex
figure of merit, e.g., the fidelity of the output circuit C0 with
a desired unitary gate U. In our framework, the optimiza-
tion of the board architecture is reduced to the search of the
optimal operator R � 0 with the linear constraints (4). This
is a standard problem of convex optimization, for which
efficient algorithms are known. Basically, we need to
implement the search on the extremal points of the convex
set of Choi operators. Moreover, the complexity of the
search can be dramatically reduced by exploiting addi-
tional constraints, e.g., symmetry properties of the circuit
board. The optimal Choi operator will finally single out the
optimal architecture, automatically deciding if the N slots
of the circuit-board have to be connected in a causal order
or in parallel, or in any combination of the two.

We illustrate our method in some concrete applications.
The first is the optimal universal cloning of unitary trans-
formations, i.e., the problem of designing a quantum board
that optimally achieves the N ! M cloning of an unknown
unitary U 2 SU�d� in dimension d. The board has N slots
containing N identical uses of the unknown unitary U and
performs a transformation which is the closest possible to
U�M. Evaluation for 1! 2 cloning [16] using as figure of
merit the channel fidelity averaged over all possible uni-
taries leads to optimal value F � �d


��������������
d2 � 1
p

�=d3, sig-
nificantly higher than the classical threshold reached by the
optimal estimation of a unitary Fest � 6=d4 for d > 2,
Fest � 5=16 for qubits, thus showing the advantage of
coherent quantum information processing over any classi-
cal cloning strategy.

A second interesting application is the storage and re-
trieval of an undisclosed unitary transformation U from N
uses, also called optimal quantum-algorithm learning. The
problem arises from the need of running an undisclosed
algorithm (available for N uses) on an input state  which
will be available at later time. To this purpose, one can slot
the N uses of U in a quantum circuit board, put the output
state of the board in a quantum memory, and, when the
input state will be available, use the memory to recover the
unitary. The series storing or retrieving is represented by
the quantum comb in Fig. 6, which can be cut into two

(a) =

(b) =

(c) =
FIG. 5 (color online). A quantum comb realizes different
transformations of quantum circuits, namely, it can send (a) a
series of channels into a channel, (b) a series of channels into a
comb, or (c) an input comb into an output comb.

U U U

U U U ψ

ψ

FIG. 6 (color online). Quantum-algorithm learning. One wants
to run an undisclosed unitary U on a quantum state  which is
available after the lapse of time in which the uses of U are
available.
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FIG. 4 (color online). Each quantum comb is equivalent to a
causal network, with all inputs on the left and all outputs on the
right. The Choi operator of a comb is the Choi operator of the
corresponding causal network.
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parts: a storing comb including only the uses of U, and a
retrieving comb including  (the output state of the first
part is stored in a quantum memory and is then fed in the
second part).

An evaluation for N � 1, 2 gives optimal average chan-
nel fidelities F � 2

d2 and F � 3
d2 , respectively, coinciding

with the value attained by the optimal estimation of uni-
taries. In these two cases, the optimal storing algorithm is
classical.

The present method can be easily extended to the opti-
mization of probabilistic circuit boards, containing mea-
suring devices that produce different transformations
depending on random outcomes. The probabilistic comb
corresponding to outcome i will have Choi operator Ri,
with the sum over all outcomes

P
iRi � R giving the

Choi operator of a deterministic comb [17]. A special
case is that of a comb that tests another comb—the so-
called quantum tester (see Fig. 7)—e.g., a device that tests
sequences of channels, or more generally memory chan-
nels. The probability distribution of the outcomes can then
be written in the form of a generalized Born rule pj �
Tr�RPj� where R is the Choi operator of the tested comb,
and fPig is the mathematical representation of the tester,
with Pi � 0 for all outcomes i, but

P
iPi � I2N�1 ���N�,

with Tr2n��
�n�� � I2n�1 ���n�1� 81< n � N and

Tr���0�� � 1. The tester is thus a generalization of the
concept itself of POVM, with the Choi playing the role
of the state in the Born rule. In Ref. [18], it is shown that
the optimal discrimination of two memory channels re-
quires a tester as in Fig. 7, and cannot be achieved by the
customary optimization of the input state and the final
measurement. Moreover, the theory of testers allows one
to determine the optimal tomographic setup for quantum
channels, which is simply realizable in the lab, and was
unknown before [19].

In addition to the above applications, quantum combs
are also the precise description of single-party strategies in
quantum protocols, i.e., games, cryptography, and algo-
rithms. In the last case, the slots represent calls to the
oracles, and the present method provides an ideal frame-
work to address minimization of the number of calls, with
the possibility of achieving provably optimal algorithms,
e.g., in a generalized Simon algorithm, which resorts to
discrimination of classes of quantum oracles [20,21].

In conclusion, we introduced a new method for optimi-
zation of quantum networks and illustrated its effectiveness
in several applications in which our theory solves problems
that could not even be addressed otherwise. As main
examples, comb theory allows us to optimize cloning,
storage retrieving, discrimination, estimation, and tomo-
graphic characterization of quantum circuits.
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