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Calculation of Superdiffusion for the Chirikov-Taylor Model

Roberto Venegeroles™

Centro de Matemdtica, Computacdo e Cognigdo, Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil
(Received 29 April 2008; published 1 August 2008)

It is widely known that the paradigmatic Chirikov-Taylor model presents enhanced diffusion for
specific intervals of its stochasticity parameter due to islands of stability, which are elliptic orbits
surrounding accelerator mode fixed points. In contrast with normal diffusion, its effect has never been
analytically calculated. Here, we introduce a differential form for the Perron-Frobenius evolution operator
in which normal diffusion and superdiffusion are treated separately through phases formed by angular
wave numbers. The superdiffusion coefficient is then calculated analytically resulting in a Schloemilch
series with an exponent 8 = 3/2 for the divergences. Numerical simulations support our results.
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One of the most fundamental questions in the study of
transport theory is to understand strange diffusion,
whereby a mean-squared displacement follows an asymp-
totic time power law (x?) ~ t# for B # 1, starting from
nonlinear microscopic equations of dynamics. The well-
known Brownian (normal) diffusion is characterized by the
exponent 8 = 1, while the strange diffusion is subdivided
into two types: superdiffusive (8> 1) and subdiffusive
(B < 1). The strange transport has been studied and ob-
served in a wide range of systems such as plasmas [1],
flows and turbulence [2], amorphous semiconductors, po-
rous media, glasses, granular matter [3], one-dimensional
intermittent maps [4], and biological cell motility [5].

In this Letter, superdiffusion is studied analytically in
the paradigmatic Chirikov-Taylor standard map:

I,., =1,+ Ksinf,, 0,:1=20,+1,.1 modm,

)

defined on the cylinder —7m=0<m, —o0o<]<oo,
where K is the stochasticity parameter. In the past, many
authors investigated the diffusive behavior of chaotic sys-
tems on the basis of map (1) through the diffusion coeffi-
cient D, defined as

<(In - IO)2> ~ nﬁ_l
2n ’

Brownian diffusion emerges when the last KAM barrier is
destroyed at the critical parameter value K. = 0.9716 [6].
The corresponding diffusion coefficient D(K) exhibits an
oscillatory feature for K > K,.. This behavior was first
numerically observed by Chirikov [7] and subsequently
calculated by Rechester et al. [8]. In addition to the normal
diffusion, the map (1) also exhibits superdiffusion of the
Lévy type (1 < B <2) due to accelerator mode islands,
which are created around a stable Q-periodic orbit

(I}, 83)h1==p. satisfying [9]

D= n>> 1. 2)

Y
K Z sind;, = 21, 3)

n=1

Lo — I, = 2w,
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for any integer [ # 0. For Q = 1, we have the following
stability condition [10]:

Sy 12+ Kcosf| < 2. 4)

Typically, trajectories diffuse normally, although some of
them may be dragged along the accelerated modes. Such
coexistence between chaotic and regular orbits results in a
complex dynamics whose exponent is certainly less than
the ballistic value 8 = 2. This fact has motivated the use of
suitable statistical theories such as continuous-time ran-
dom walk (CTRW) [11] and fractional kinetics (FK) [12]
in the numerical study of the superdiffusion. Here, the
superdiffusion coefficient and its corresponding transport
exponent are analytically calculated from first principles,
i.e., from dynamics ruled by Eq. (1).

The analysis of the map (1) is best carried out in Fourier
space. The Fourier expansion of conditional probability
density p,, in which an initial state (I,, ) at n =0
evolves to a final state (/, 6) at step n, can be written in
the form

pull, 011y, 0) = > e™’a,(m, ). 5)

m

Relations between normal diffusion and Pollicott-Ruelle
resonances for a general class of area-preserving maps that
includes Eq. (1) as a particular case was studied in
Ref. [13] through the evolution of transformed amplitudes
a,(m,q) = 2m)~" [dla,(m, I)e” "' On the other hand,
as it will be seen latter, the amplitudes &, (im, I) are proving
to be more suitable in the description of superdiffusion.
The discrete time evolution of these amplitudes are also
ruled by the Perron-Frobenius (PF) operator U, defined as
a,(m, I) = Ud,_,(m, I). More explicitly, starting from the
evolution of a,(m, g), we have
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a,(m, q) = = [d@dle*‘(’"“q’)
X / d6'dI's(I — I' — K sind')5(0 — 0' — 1)
X2 f dq'e" 4 a,_ (m', q). (6)

The useful PF operator for d, (m, I) can be obtained in three
steps: (i) integrating Eq. (6) on 0 and I’; (ii) multiplying the
two sides of the resulting equation by exp(igl’) and inte-
grating both on ¢; and (iii) considering the translation
operator da(I + x) = exp(xd;)a(l). Finally, the dynamics
of the system (1) induces the following law of evolution

an(m 1) =e ™ J, (Ko, (m', D), (7)

where J,(x) is the Bessel function of the first kind.
Hereafter, we will use the abbreviation J,,(iKd;) = J,,.
The initial probability amplitude is given by dy(m, I) =
(2m)~leimb§(I — I,), which represents the certainty of
an arbitrary initial condition / = [, and § = 6, at n = 0.
Besides, we must define the density to generate initial
values (I, 8,), which are independent from the dynamics.
Usually, the initial values are assumed as uniformly dis-
tributed in their respective domains [14]. In this sense,
numerical calculations of (2) are performed as D, =
N7'SN (L, — 1o )*/2n, where N >> 1 is the number
of random initial conditions generated for each value of K.

In order to calculate the superdiffusion coefficient Dy,
it is useful to calculate the normal diffusion coefficient
D, by means of this new approach. In this context,
arbitrary moments depend only on the state m = 0 at
instant  n:  {I7) = 27)*[(i9,)"a,(0, g)],—0 = (27) X
[dla,(0,)I”. Thus, we can decompose the projected
PF operator PU" into two parts: PU" = PU"P + PU"Q,
where P and Q are mutually orthogonal projection opera-
tors that represent the states m = 0 and m # 0, respec-
tively. On the other hand, PU"Q can be neglected due to
dg(m # 0, q) = e”™%_ whose expected value disappears
at random initial conditions on [—r, 7). Hence, PU"P
rules the diffusion in the normal regime [13]. Now consider
the leading case where m; = m, = ... = m, = 0, which
gives U" = J& = 1 + n(K*/4)d7 + O(3%) and the quasi-
linear diffusion D, = K? /4. Corrections to this value are
obtained by the introduction of a small k-piece of wave
numbers in a quasilinear stripe of length n, as shown in the
example below for k = 3:

n
N

(0,000, my)(omy, my)(my, m3)(ms, 0)....(0,0). (8)

~
k=3

Considering k < n, we can neglect border effects so that
we have n configurations of the type (8) that gives the same
result for PU"P. Adding to these the quasilinear configu-

ration, we have

a,0,1) = %(1 + ”ZZZQW‘S(’ —I), 9

my mjy
where the operator A is given by
Q=7 e tmrmtml[y, . (myK) + Jpy - (m3K)
+ jml—mz][‘]mz—m3(m3K) + jmz—n13]jm3' (10)

Thus, in order to obtain only relevant contributions to the
diffusion coefficient, we should perform summation in
Egs. (9) and (10), over all integers subject to the constraint
my + m, + my = 0. Besides, Bessel operators follow the
same series expansions of Bessel functions, namely J,,
a™[1 + O(d?)]. Evidently, wave numbers that contribute
with terms O(93) can be neglected in the calculation of the
moment (I?) resulting, in addition to my = —(m; + m,),
in the three independent j-constraints [m| + |u;m; +
oimy| + |my +my| =2, where  (u;, ;) ={(0,0),
(1, =1),(1,2)}. Applying these constraints, the sum
D iy myms Q) becomes Q; + ), where

O =25(K)JoJ3, (11)

O, = 272K)J? + 44,2K)J,2K)J o], + J5(K)
X [~J32K) + J3(K) + J,(2K) = J(K)]J3. (12)
Finally, the normal diffusion coefficient is calculated as

Dnor — i
D 2n

=1-2J,(K) — 2J3(K) + 2J3(K) + ..., (13)

/ dIT1 + n(@, + 0D, + nd2)s(D I

ql

for n > 1, where I =1 — I,. The terms of the series
expansion (13) coincides with the Rechester et al. results
[8], noting that —J,(2K)J4(2K) = J3(K) for K > 1.
Further corrections can be obtained by increasing the
k-piece.

We turn now to the analysis of superdiffusion. In con-
trast to the dynamics of normal process, accelerator modes
allow the PF operator U" to load phase terms of the type
exp(il> ,m;) without the need of previous condition
> ym; = 0. On the other hand, accelerator modes also
contribute to the corrections of the quasilinear value,
although much stronger than the quasilinear one.
Therefore, the stripes of wave numbers that represent the
leading contributions for the superdiffusion are

(0,0)...(0,0) (0, m) (m, m) ...(m, m), (14)
“ 7\;7 J\ AN ~ J

1 1 r

n
(m, m)...(m, m), (15)

corresponding to particular configurations of PU"Q and
QU"Q, respectively. Adding the contributions due to
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stripes (14) and (15), the density p, assumes the form

1 & . A
pulL, 0y, 00)=5—% > e~ =ND, (K)T§8(I — o)
T i =im#0

(16)

where, neglecting O(J?) terms and considering n > 1, we
have

J_,(mK), r=1,
®,,(K) - | 0), =r<n an
YhJo(UmK), r=n.

The leading terms in the Eq. (16) are phases restricted to
the following conditions

I=1,=2pm, 0p=0=29, (18)

for any integer p, including I, = 2p7 as an alternative
solution due to delta function 6(I — I,). In other words,
only initial conditions that start from the vicinity of I, =
2par (or final conditions that reach it) for any 6, € Sy and
finish as a Q-periodic orbit (1 = Q =< n) must contribute to
the superdiffusive transport. This scenario includes not
only accelerator modes, but also irregular trajectories that
are dragged along them. Such combination of regular and
irregular paths makes it difficult to know precisely the
probability measure for angular variables (6, 6,). In this
sense, the angular amplitude along the accelerated dynam-
ics can be estimated as

1 167
—, 19
X 19)

: 2
ﬁ d0dfye™?0) ~ WAHAGO =—

where the maximal width of stability Af, is given by Sy:
Af, = arccos(—4/K) — 7/2 = 4/K, (20)

valid for K > 4. The averaged phase (19) is justified con-
sidering that: (i) its value is lower than 2A@A6,,, where the
factor 2 is due to the existence of two gaps; and (ii) the
same integral must be proportional to m 2. In Fig. 1, we
illustrate this scenario for K = 1.1 X 271 (Q = 3 acceler-
ated mode [9]), showing two gaps with widths A6, as
foreseen by Egs. (4) and (20). Note that orbits lying in
the gaps are captured by condition (18) while the others
develop Brownian motion.

The stability interval for accelerated modes in terms of
the parameter K is given by

Sk: 2|l < K <2|llmy/1 + (2/17)?, 21

obtained through Egs. (3) and (4) for Q = 1. The stability
windows Sy and S are maximal since they contain all
other Q > 1 corresponding stability intervals for each cor-
responding value of / [7,10]. We can now compare the
weight coefficients ®; ,,(K) and @, ,,(K) subject to Sg.
For K = 2|l|m, the sum ¥, .om 2®, ,(K) can be esti-
mated as follows:

FIG. 1. Measurements of 8 (n = 100) versus 6, from numeri-
cal simulations performed for N = 5000, K = 1.1 X 2, [, =
277, and 6, uniformly distributed on [ — 77, 77). Accelerated orbits
cluster along the diagonal @ = 6, on the gaps located inside the
interval 77/2 < |6,| < arccos(—4/K) = 2.188.

J_,,(mK) 12 1
m =~ —mtie, ~ — (22
”;0 m2 87TK mZ‘l( ) cm \/E ( )

where ¢,, = (m — 1/2)7%? — m =32, noting that this se-
ries is convergent by the alternating series criterium. On
the other hand, ®,, ,,,(K) can be assessed for n > 1 using a
Schloemilch series [15]:

[oe] 1 1 ll
Jo(jmK) = — =+ + ,
Zl 2 |mK] Zl (K — (2jm)
(23)
valid on the interval
207 <|mlK <2(I' + 1), (24)

where [' is a positive integer. Comparing the restriction
(24) with the stability condition (21) it is easy to see that, in
the limit n — oo, the superdiffusion rate will diverge on
K = 2|l|7 by setting I’ = |ml|. Furthermore, due to the
strong decay of angular amplitudes (19), the leading wave
numbers are m = *1. Finally, the mean-squared displace-
ment due to accelerated dynamics is calculated by
(I2())sup = [ dIpyec(I, n) I?* resulting for the diffusion

% _ 11(6[ i n;(J_m(mK) + iJo(jmK)ﬂ

ql m=1 Jj=

16 &
=~ Z Jo(jK) for K € Sk (25)
j=1

and zero otherwise.
We have made extensive numerical studies of the super-
diffusion coefficient (25), including the normal diffusion
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FIG. 2. Theoretical diffusion rate D/ D, (solid line) compared
with normal rate Dnor/Dql (dotted line) and measurements of
D/Dql from numerical simulations ( A) for n = 100 and N =

5000. First and second theoretical diffusion peaks occur for
values 14.63 (K = 6.30) and 6.07 (K = 12.58), respectively.

term (13). A particular case for n = 100 is shown in Fig. 2.
It is clear that there is good agreement between theoretical
and numerical results, especially when it is observed the
accumulation of enhanced occurrences to the right of
theoretical spikes in contrast to the their quasi absence
on the left. In addition to the leading peaks located on
the intervals (21) with divergences at K = 2|l|7 for
n — oo, map (1) has a more intricate chain of secondary
peaks whose phenomenology has been well studied in
Ref. [16—18]. In order to describe them, we need to retain
more terms in the evaluation of Eq. (16) including quasi-
linear stripes with a growing number of “failures’ (se-
quence of different values for wave numbers).

An important question concerns the determination of the
superdiffusion exponent. As pointed out by Zaslavsky and
Edelman [17], typically it is hardly possible to get a
theoretical value of B. If the power law Dg,, < nf~! is
asymptotically valid, then 8 > 1 may exist only for values
of K for which Dy, diverges. Using the asymptotic form of

Bessel functions and noting that }"_, JTV2 ~ 202 for
n > 1, we can evaluate Eq. (25) for K = 2|/|7 as
Dsup nl/z
D [113/2

(26)
ql
resulting B8 = 3/2. In Ref. [18], there is a comparison
between CTRW and FK formalisms applied to the study
of superdiffusion of the map (1). In both studies, the
numerical values of B for K = 1.03084 X 27 (Q =5
accelerated mode) are also very close to 3/2, namely 8 =
1.42 = 0.15. Note that Eq. (26) not only represents a class
of universality for S8 but also suggests the existence of
other classes related to secondary diffusion peaks. In a
similar way, further corrections for Dy, may give second-
ary divergence terms for tighter K-intervals such that,

together, they form a multifractal layer for the mean-
squared displacement in the form (I*)g, ~ > ;Cp nP,
where 8; = 8,;(K) as numerically observed in [16-18].
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