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Periodicity Hub and Nested Spirals in the Phase Diagram of a Simple Resistive Circuit
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We report the discovery of a remarkable “periodicity hub” inside the chaotic phase of an electronic
circuit containing two diodes as a nonlinear resistance. The hub is a focal point from where an infinite
hierarchy of nested spirals emanates. By suitably tuning two reactances simultaneously, both current and
voltage may have their periodicity increased continuously without bound and without ever crossing the
surrounding chaotic phase. Familiar period-adding current and voltage cascades are shown to be just
restricted one-parameter slices of an exceptionally intricate and very regular onionlike parameter surface
centered at the focal hub which organizes all the dynamics.
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Bifurcations are familiar phenomena routinely used
nowadays as sensitive indicators of drastic changes in
dynamical behaviors in physics and related sciences [1—
5]. In fact, the past two decades witnessed extensive efforts
to describe how bifurcations between periodic and chaotic
oscillations unfold in all sorts of systems. They are ubiq-
uitous features supported by all theoretical descriptions,
based on models ranging from ‘“simple” discrete-time
mappings to sophisticated continuous-time multidimen-
sional flows ruled by sets of differential equations. Bifur-
cation phenomena involving the variation of just a single
parameter, referred to as codimension-one bifurcations, are
now reasonably well understood [1-5]. In contrast, frag-
mentary information is available about much more realistic
situations requiring the simultaneous variation of at least
two independent parameters (codimension two).

The quintessential example of a codimension-two bifur-
cation and a current hot topic of research involves homo-
clinic orbits in the vicinity of a saddle focus, trajectories
biasymptotic to a nonhyperbolic stationary point [6—10]. In
this setup Shilnikov proved a celebrated theorem stating
that, at nearby parameter values, one finds trajectories
belonging to multiple horseshoes and in correspondence
with the full shift on n symbols [6—8]. While it is well
known that familiar codimension-one signatures may be
seen locally in higher codimension, no globally encom-
passing description is available about the organization over
large parameter ranges, particularly about how distinct
bifurcation scenarios interconnect and influence each
other. For flows, no codimension-two investigation of the
structuring of the abundant chaotic phases seems to have
been done. Briefly, despite much hard work, the situation is
still messy, as synthetically summarized in a survey by
Fiedler [11]: ““An embracing systematic theory of homo-
clinic bifurcation in two parameters systems is not in sight.
Rather, there appears to be hundreds of different cases
which need to be analyzed separately.”

Our aim here is to describe the striking organization
around a remarkable parameter point, an organizational
hub, discovered inside the chaotic phase of a circuit studied
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by Nishio et al. [12], our Fig. 1 below, containing a linear
negative resistance and a nonlinear resistance formed by
two diodes. We selected their nice circuit because it allows
spirals to be measured experimentally. In addition, unclut-
tered by superfluous variables and parameters, their setup
produces arguably the simplest possible normal form to
experimentally observe spirals and hubs. We remark, how-
ever, that hubs and spirals are generic features because we
also observed them in other familiar systems such as
Rossler equations, in variations of Chua’s circuit, and in
some chemical and biological oscillators. As is clear from
Fig. 2, the chaotic phase of the circuit contains infinite
hierarchies of nested spirals which, altogether, compose a
remarkably structured onionlike organization. In phase
space, each individual spiral is characterized by a specific
regular oscillation of a certain period which increases
continuously beyond any bound when control parameters
are suitably tuned along the spiral, towards the common
central focus. Before commenting further on Fig. 2, we first
explain how it was obtained.
The circuit in Fig. 1 defines an autonomous flow [12]:

dx dy dz

Y ax+ A & v~ By

o ax + z, T f), o x— By
(D

1 1y

9 TR,

FIG. 1. The symmetric electronic circuit which displays the
infinite hierarchy of nested spirals illustrated in Fig. 2. It involves
negative linear and nonlinear resistive elements.
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FIG. 2 (color online).
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(a) Phase diagram with an infinite hierarchy of nested spirals connected by the organizing hub at the focal

point F. The diagram displays the magnitude of the Lyapunov exponents. (b) Heads of the first few shrimps [13] A;, B;, C;, D;
emerging aligned along a parabolic arc, Eq. (4). See relevant data in Table I. Lines & and g are defined by Eqgs. (5) and (6).
(c) Bifurcation diagram along the parabolic arc through F and A;, B;, C;, D;. (d) Projections of the orbits in spirals A, B, C, D. In
spirals A and C orbits are self-symmetric, while in B and D one finds coexistence of dual pairs in involution.

Here, x and y are scaled proxies of the currents i; and i, in
Fig. 1, z is the scaled voltage drop v across the capacitor C,
and « and B are free control parameters related with

reactive elements in the circuit: @ = r\/C/L; and B =
L,/L,. The piecewise linear resistance is

=355 1)

2
where, following Nishio et al. [12], we fix y = 470,
although our main result, Fig. 2(a), remains essentially
unchanged in the wide interval 40 = y = 1000.

Figure 2(a) displays a phase diagram for the resistive
circuit obtained by plotting Lyapunov exponents on a
1200 X 900 grid of equally spaced points. Equations (1)
were integrated with a fixed-step (2 = 0.005) fourth-order
Runge-Kutta scheme. The first 35 X 10° steps were dis-
carded, the subsequent 700 X 103 steps were used to com-
pute the Lyapunov spectra. As known, negative exponents

characterize periodic solutions while positive exponents
are signatures of chaotic oscillations.

The phase diagram in Fig. 2(a) has two remarkable
features: first, it contains an infinite nesting of spirals
corresponding to periodic solutions; second, there is a
distinctive focal point where all spirals originate or termi-
nate and which organizes the dynamics in a wide portion of
the parameter space around it. The focal point was numeri-
cally estimated to be roughly at

F = (ay, By) = (0.4612...,3.7191...). 3)
Individual spirals are characterized by specific families of
periodic oscillations embedded in the chaotic phase.
Spirals are formed by suitably ‘“gluing” together leg to
leg the characteristic four-legged dark domains called
shrimps in Ref. [13] and which exist abundantly both in
maps and flows [14]. Spirals and the spiral nesting are truly
codimension-two phenomena: they may be only fully un-
folded by tuning at least two parameters simultaneously.
Figure 2(b) shows how the four largest spirals, labeled A,
B, C, D, coil up around F. The doubly superstable points
[15] defining shrimp heads were used to label the succes-
sive shrimps forming each spiral. Thus, circling clockwise
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FIG. 3. Waveforms of the current x() along spirals A, B, C, D when moving towards the focal point F. Return maps of the maxima
X; X X;41 give the number of peaks. The number of peaks of x(z) increases out of phase with respect to those of y(¢) and z(z), as shown
in Table 1. Signals in self-symmetric spirals have much richer waveforms.

along spiral A one meets successively the heads of shrimps
A1, Ay, etc. As is clear from the figure, the heads A;, B;, C;,
D;, and F lie all along a distinctive direction, a parabolic
arc, represented by a vertically slanted dashed curve in the
figure. By fitting the shrimp heads of the four spirals A;, B;,
C;, D, fori = 1,2, 3,4 we found an approximate equation
for this arc:

B = 124.5875a% — 143.7802« + 43.5301. @)
Figure 2(b) contains two distinctive directions:

line h: B = —1.7604a + 4.531, (5)

line g: B = 13.3912a — 2.4569. (6)
Line &, the homoclinic line, defines a unique direction in
the phase diagram where all major shrimp legs not coiling
up around F accumulate. In contrast, line g marks a
“generic”’ line on the left side of the parabolic arc. For
any g line on this side of the arc one finds the simplest
possible sequence of bifurcations when moving to or from
the focal point F. Such bifurcation sequences remain
invariant along any equivalent line passing through F
and remaining on the left side of the parabolic arc.

The bifurcation diagram in Fig. 2(c) was obtained by
simultaneously tuning « and B along Eq. (4). It sheds light
about the origin of the so-called periodic-chaotic sequen-
ces, also known as ‘“‘period-adding” sequences [16—19].
Many such sequences reflect information gained from
restricted one-parameter slices of codimension-two spiral
nestings. A nice feature of Egs. (1) is that they are invariant
under the involution (x, y, z) — (—x, —y, —z). This implies
that every solution has always a “‘symmetric dual,” which
may be either self-symmetric or not; i.e., under the invo-
lution, orbital points will transform either to the same or to
a distinct orbit. Both types of solutions are illustrated in
Fig. 2(d).

The evolution of the current x(7) along the four largest
spirals is shown in Fig. 3 while Table I collects location,
period, and number of peaks p,, p,, p, of the currents and
voltage for the first few heads A; and B;. Curiously, the
number of peaks changes out of phase along the spirals, but
always in a systematic way. A similar out-of-phase change
occurs for C and D but starting from (p,, py, p,) = (5,5, 5)
and (3, 3, 3), respectively.

Figure 4 illustrates typical z = 0 basins observed for
spirals with nonself-symmetric dual attractors. As it is easy
to realize, the strong ‘““fractalization’’ of the basin bounda-
ries poses great difficulties for predicting the behavior of a
system as one moves towards the focal point, reminiscent
of the difficulties familiar from Wada basins [20]. The
basin B, was computed with & = 0.001, the others with
h = 0.005. The ability to resolve basin structures when
approaching F may certainly be used for benchmarking
both experiments and numerical computations. For, experi-
ments are strongly limited by noise of various kinds, while
numerical work is limited by the accuracy of both com-
puters and algorithms.

TABLE I. The number of peaks p,, p,, p, of currents x(¢), y(z)
and voltage z(7) evolve distinctly but regularly along the two
types of spiral, self-symmetric or not. T is the period of the
oscillations while («, 8) locates the doubly superstable “cen-
ters” of the shrimps [13,15] along spirals A; and B;.

a B T D Dy 1Z
A 052800 232100 15.965 3 3 3
A, 040550 575000  21.030 3 5 5
A, 047860 327290  28.355 5 5 5
Ay 045082  4.02240 34455 5 7 7
B, 049530  2.90520 11.040 2 2 2
B, 043780  4.44300 13915 2 3 3
B, 046998  3.48562 17.360 3 3 3
B, 045644  3.85528 20.495 3 4 4
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FIG. 4 (color online).
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Severe “fractalization’ of the basins of attraction of nonself-symmetric dual attractors in spiral B observed

when marching towards F. Black and white are basins of *oo. The other two colors are the basins of the dual pair.

Finally, we mention that it is very tempting to associate
spiral nestings with the much studied homoclinic orbits.
However, numerical work shows spirals not to exist in
some flows which are textbook examples of the
Shilnikov setup. We described the unfolding of an infinite
sequence of spirals in the vicinity of the numerically found
focal hub. We believe our investigation to be accurate
albeit not rigorous, and remark that we are not aware of
any theory to predict and locate hubs. The parameter
organization around hubs, in particular the regular spiral
nesting, sheds new light on matters which seemed already
well explored. We observed hubs and spirals in a broad
spectrum of oscillators such as the Rossler equations, in
variations of Chua’s circuit, in certain chemical and bio-
logical oscillators and, therefore, expect them to be of
importance in several fields, beyond the electronic circuit
used as an illustrative example here. A key open question
now is to investigate what sort of dynamical phenomena
lead to hubs and spirals, the eventual role of homoclinic
orbits in their genesis, and the mechanisms inducing peri-
odicity transitions along and among spirals.
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