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Ultracold molecules offer a broad variety of applications, ranging from metrology to quantum
computing. However, forming ‘‘real’’ ultracold molecules, i.e., in deeply bound levels, is a very difficult
proposition. Here, we show how photoassociation in the vicinity of a Feshbach resonance enhances
molecular formation rates by several orders of magnitude. We illustrate this effect in heteronuclear
systems, and find giant rate coefficients even in deeply bound levels. We also give a simple analytical
expression for the photoassociation rate and discuss future applications of the Feshbach-optimized
photoassociation technique.
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In recent years, several techniques, ranging from Stark
decelerators to buffer-gas cooling, have been developed to
obtain cold molecules [1]. Such molecules are interesting
for a range of applications [2] in metrology, high precision
molecular spectroscopy, or quantum computing [3]. How-
ever, forming ultracold stable molecules in deeply bound
levels remains a challenge: most approaches give tempera-
tures still considered hot (roughly 100 mK–1 K). To reach
the ultracold regime (below 1 mK), direct laser cooling of
molecules is usually not effective due to their rich and
complex level structure [4]. Instead, it is possible to create
molecules starting from ultracold atoms, via photoassoci-
ation (PA) or ‘‘magnetoassociation’’ (MA). While PA oc-
curs when two colliding atoms absorb a photon to form a
molecule [2], MA takes advantage of magnetically tuned
Feshbach resonances [5].

Over the past decade, PA has been widely used to study
long-range molecular interactions and to probe ultracold
gases [2], and MA to realize molecular condensates [6] and
investigate the Bose-Einstein condensation (BEC)-BCS
crossover regime [7]. However, both methods usually lead
to molecules in highly excited states. According to the
Franck-Condon principle, electronic transitions in PA oc-
cur at large interatomic distances, leading to molecules in
high rovibrational levels that can either decay by sponta-
neous emission or collisional quenching. To stabilize the
molecules in their ground potentials, one could use two-
photon schemes [8] or excited molecular states with long-
range wells that increase the probability density at short
range. This latter solution requires the existence of double-
well molecular potentials [4] and cannot be easily gener-
alized. In MA, molecules are produced by sweeping the
magnetic field through a Feshbach resonance, which oc-
curs when the energy of a colliding pair of atoms matches
that of a bound level associated to a closed channel. The
molecules produced by MA are in the uppermost states
near dissociation [5] and thus relatively extended and
fragile.

In this Letter, we investigate a new PA scheme which
uses a magnetically induced Feshbach resonance [5] to
enhance the probability density at short range. This

Feshbach-optimized photoassociation (FOPA) allows tran-
sitions even to deeply bound levels (see Fig. 1). Combining
Feshbach resonances and PA has been proposed to asso-
ciate atoms [9] and convert an atomic into a molecular
BEC [10]. However, as opposed to previous proposals
based on the Franck-Condon principle [11], FOPA takes
advantage of the whole wave function in a full quantum
coupled-channel calculation, and is thus more general.

Feshbach resonances commonly occur in systems with
hyperfine interactions. We focus our attention on hetero-
nuclear systems for which the presence of a permanent
dipole moment allows transitions from the continuum di-
rectly to a rovibrational level v of the ground electronic
molecular states [12] (see Fig. 1). The corresponding pho-
toassociation rate coefficient Kv

PA � hvrel�vPAi [2,8] de-
pends on vrel, the relative velocity of the colliding pair,
and on �vPA, the PA cross section. The brackets stand for an
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FIG. 1 (color online). FOPA: Colliding atoms (1) interact via
open (blue) and closed (green) channels due to hyperfine inter-
actions. A Feshbach resonance occurs when a bound level
(2) (green wave function) coincides with the continuum state
(blue wave function). A photon (wavelength �) can associate the
atoms into a bound level v (3) of the ground state potential (red)
with inner and outer classical turning points Rin and Rout.
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average over the distribution of vrel, here a Maxwell-
Boltzmann distribution characterized by the temperature
T [13]. At low laser intensity I and ultracold temperatures,
where only the s wave contributes significantly, the maxi-
mum rate coefficient (neglecting saturation) is [12]

 Kv
PA �

8�3

h2

I
c
e�1=2

QT
jh�v;J�1jD�R�j��;l�0ij

2; (1)

whereQT � �2��kBT=h
2�3=2, andD�R� is the appropriate

dipole moment for the transition between the initial
j��;l�0i and final j�v;J�1i states corresponding to the s
wave �l � 0� continuum wave function of the colliding
pair and the populated bound level (v; J � 1) wave func-
tion. Here kB, h, and c are the Boltzman and Planck
constants and the speed of light in vacuum, respectively.

We determine j��;l�0i by solving the Hamiltonian for
two colliding atoms in a magnetic field [5]:

 H �
p2

2�
� VC �

X2

j�1

Hint
j : (2)

Here, VC � V0�R�P
0 � V1�R�P

1 is the Coulomb interac-
tion, decomposed into singlet (V0) and triplet (V1) molecu-
lar potentials, with the associated projection operator P0

and P1. The internal energy of atom j, Hint
j �

a�j�hf

@
2 ~sj � ~ij �

��e ~sj � �n ~ij� � ~B, consists of the hyperfine and Zeeman
contributions, respectively. Here ~sj and ~ij are the electronic

and nuclear spin of atom jwith hyperfine constant a�j�hf , and
~B is the magnetic field. Since the nuclear gyromagnetic

factor �n is 3 orders of magnitude smaller than �e, we
neglect it in our calculations.

We solve for j��;l�0i by using the mapped Fourier grid
method [14], and by expanding it onto the basis con-
structed from the hyperfine states of both atoms,

 j��;l�0i �
XN
��1

 ��R�fjf1; m1i � jf2; m2ig�; (3)

where ~fj � ~ij � ~sj is the total spin of atom j, and mj its
projection on the magnetic axis. Here,  ��R� stands for the
radial wave function associated with channel � labeled by
the quantum numbers fj, mj. As an example, we consider
forming LiNa in the X 1�� state starting with 6Li�f �
1
2 ; m � �

1
2� and 23Na�f � 1; m � �1�. Eight channels

with total projection M � m1 �m2 � �
3
2 are coupled by

the Hamiltonian (2), and using the potentials in [15], we
find two well-separated Feshbach resonances at 1081 G
(narrow) and 1403 G (broad). These are better suited to
extract the underlying physics than three observed over-
lapping narrow resonances [15,16], and a broad resonance
should help optimize the process while minimizing three-
body losses. Figure 2 displays Kv

PA as a function of the B
field into different levels (v; J � 1) at T � 50 �K and I �
1 W=cm2. Near a resonance, Kv

PA is drastically enhanced
by up to 5 orders of magnitude, even for the lowest �v <

10� levels. For example, with typical densities (nLi �
nNa � 1012 cm�3) and an illuminated volume V of 1 mm3,
Nv � nLinNaVK

v
PA � 2	 106 molecules= sec are formed

in v � 0 at 1403 G (neglecting back stimulation [8]).
These giant formation rates can be understood by the

sharp increase in the amplitudes of the  �’s in the vicinity
of a Feshbach resonance. In Fig. 3, we show the total
probability density j��;l�0�R�j2 as a function of B. As
the magnetic field B nears either of the resonances at
1081 and 1403 G, j��;l�0�R�j2 increases by several orders
of magnitude (qualitatively the same for all channels).
Figure 4 shows j��;l�0�R�j2 for two specific values of B

FIG. 2 (color online). Kv
PA in cm3=s versus the B field (T �

50 �K, I � 1 W=cm2) for various levels (v; J � 1) of the LiNa
X 1�� potential, starting from 6Li�f � 1

2 ; m � �
1
2� and

23Na�f � 1; m � �1�. Two Feshbach resonances at 1081 and
1403 G enhance the PA rates by several orders of magnitude.

FIG. 3 (color online). Probability density j��;l�0�R�j
2 vs B. As

B nears a resonance, j��;l�0j
2 increases sharply (truncated above

0.01). Examples of j��;l�0j
2 off and on resonance (green planes

at 1200 and 1400 G, respectively) are shown in Fig. 4.
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on and off resonance (1400 and 1200 G, respectively): the
resonance leads to a large peak at shorter R near 40 a0 (see
top panel, inset). This peak is roughly located at the
classical outer turning point Rout of the bound state asso-
ciated to the closed channel, usually one of the upper-
most bound levels. This is apparent in the top panel, where
this peak almost coincides with the outer lobe of
j�v�44;J�1�R�j

2, the uppermost bound level of X 1��.
We also observe that the off-resonance probability density
is very much reduced when compared to on-resonance,
leading to a very weak overlap integral in Kv

PA. The lower
panel zooms on the short range, where j��;l�0�R�j2 on
resonance is much larger than off resonance, leading to a
substantial overlap integral in Kv

PA with deeply bound lev-
els (e.g., v � 0 or 4). We also note that the more compli-
cated nodal structure of j��;l�0�R�j2 is a direct result of the
hyperfine mixing among channels.

Analytical results are obtained with a two coupled chan-
nel model of reduced mass �, in which the wave function
 1 of the continuum state associated to the open channel 1
(with potential V1) is coupled to the wave function  2

associated to the closed channel 2 (with V2) [17]

 �
@

2

2�
d2

dR2

 1

 2

� �
�

�
V1 V1;2

V2;1 V2

�
 1

 2

� �
� E

 1

 2

� �
: (4)

We assume both couplings V1;2 and V2;1 real, and fix the
threshold E1 of channel 1 at E � 0. If the couplings were
switched off, the solution for channel 1 would be  1 !

 reg (regular solution defined below) while the closed
channel 2 would have a bound state  2 !  0 with energy
E0. A resonance occurs when E nears E0. The analytical
solutions for Eq. (4) are then [17]
 

 1�R� �  reg�R� � tan� irr�R�

�
R!1 1

cos�

�����������
2�

�@2k

s
sin�kR� �bg � ��; (5)

  2�R� � �

�������
2

��

s
sin� 0�R�; (6)

where �bg and � are the background and resonant phase
shifts, while k �

����������
2�E
p

=@. The asymptotic regular and

irregular solutions are  reg �
��������
2�
�@2k

q
sin�kR� �bg� and

 irr �
��������
2�
�@2k

q
cos�kR� �bg�. Finally, the width ��E� of the

resonance may vary slowly with E.
Here, scanning the B field is equivalent to scanning E,

since the position E0 of the bound state in channel 2 is
shifted by the Zeeman interaction. To first order in k, the
s-wave phase shifts are related to the scattering length a by
tan��� �bg� � �ka, with �bg � �kabg and [5]

 a � abg

�
1�

�

B� B0

�
; (7)

where abg is the background scattering length of the pair of
atoms (which can slowly vary with B), B0 is the position of
resonance, and � is related to ��E� [5]. Introducing the
analytical solutions into Eq. (1) leads to

 Kv
PA � Kv

off j1� C1 tan�� C2 sin�j2; (8)

where Kv
off �

8�3

h2
I
c
e�1=2

QT
jh vjDj regij

2 is the rate coeffi-
cient off resonance (� � 0) with  v the final (target) state,
and C1 � h vjDj irri=h vjDj regi and C2 �

�
������������
2=��

p
h vjDj 0i=h vjDj regi relate to the open chan-

nel 1 and the closed channel 2, respectively.
The relative importance of C1 and C2 depends on the

nodal structure of  v,  reg,  irr, and  0. Unless Rout of  v
accidentally coincides with a node in  reg or  irr, the
overlap integral of  v with both  reg and  irr are of the
same order, leading to jC1j � 1. The relative size of C2 can
be controlled by the target level v. For a deeply bound
level, Rout is at short separation where the overlap with  reg

is small while the overlap with  0 can be substantial
leading to jC2j 
 jC1j. For very extended levels v, Rout

of  v is at large separation and the overlap with  0 less
important, leading to jC2j � jC1j. Naturally, these behav-
iors might differ for specific levels v.

The generalization of Eq. (8) to several coupled chan-
nels is straightforward. Furthermore, we find that only two
or three channels contribute significantly to give these
giant formation rate coefficients. In Fig. 5, we show Kv

PA
for v � 0 with the same parameters used in Fig. 2. The top
panel depicts the scattering length a with the two Feshbach
resonances and its analytical fit. The bottom panel com-
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FIG. 4 (color online). j��;l�0�R�j2 on (black) and off (red)
resonance. The top panel shows a peak appearing near R�
40 a:u: on resonance (inset). The upper bound level v � 44 of
X 1�� is also depicted. The off-resonance density is negligible
for R< 50 a:u: The bottom panel illustrates the inner region with
more deeply bound target levels (e.g., v � 0 and 4). Again,
j��;l�0j

2 is sizable on resonance and negligible off resonance.
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pares the exact numerical results using eight coupled
channels with the simple expression (8). In both cases,
the agreement is impressive. We verified that similar agree-
ment was obtainable for other levels v, indicating the broad
and general validity of Eq. (8).

In conclusion, we showed that it is possible to use
Feshbach-optimized photoassociation to form ‘‘real’’ ul-
tracold molecules, i.e., in deeply bound levels, in large
quantities. In fact, the rate coefficient increases by several
orders of magnitude, leading to giant formation rates near
Feshbach resonances. We applied this concept to LiNa, a
polar molecule, and found rates of �106 molecules= sec
into low v’s, assuming a 50% efficiency due to back
stimulation and inhomogeneity of the B field. This com-
pares well with recent results based on a combination of
MA and stimulated Raman adiabatic passage (STIRAP)
where about 80% of 20 000 Feshbach molecules are trans-
ferred into deeper levels in a cycle (cooling� forming
Feshbach molecules) of tens of seconds [18]. In addition,
we gave a simple analytical model describing the FOPA
technique. As opposed to other proposals based on the
Franck-Condon principle for transition near the turning
point Rout of the closed channel, FOPA takes advantage
of the full wave function and its amplification in the
vicinity of a Feshbach resonance, making it a general
technique. In fact, FOPA could be used to do the spectros-
copy of more deeply bound levels of excited electronic
states which are usually not reachable by standard PA,
bridging the gap between traditional spectroscopy for
deep levels and PA of high-lying levels realized with ultra-
cold atoms. Also, by targeting levels v for which C1 or C2

is dominant, it is possible to determine the parameters of
the scattering length (abg, �, and B0) by pure spectroscopic
measurements. This offers an accurate nondestructive
method to first detect a Feshbach resonance, and then

obtain the scattering length parameters. Finally, we note
that this enhancement will be present in other manifesta-
tions of Feshbach resonances, such as those obtained via
electric fields [19] or magnetic dipolar interactions (e.g., in
Cr [20]). This is a very general technique which can be
applied to bosonic, fermionic, or mixed species, where
Feshbach resonances exist.
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FIG. 5 (color online). In (a) scattering length a for full coupled
problem (circles) and the fit using a � abg�B��1�
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