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It is shown that statistics of records for time series generated by random walks are independent of the
details of the jump distribution, as long as the latter is continuous and symmetric. In N steps, the mean of
the record distribution grows as the

�������������
4N=�

p
while the standard deviation grows as

�������������������������
�2� 4=��N

p
, so the

distribution is non-self-averaging. The mean shortest and longest duration records grow as
����������
N=�

p
and

0:626 508 . . .N, respectively. The case of a discrete random walker is also studied, and similar asymptotic
behavior is found.
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The study of record statistics is an integral part of
diverse fields including meteorology [1,2], hydrology [3],
economics [4], sports [5–7], and entertainment industries
among others. In popular media such as television or
newspapers, one always hears and reads about record
breaking events. It is no wonder that Guinness Book of
Records has been a world’s best seller since 1955. In
physics, records are relevant in the theory of domain-wall
dynamics [8], for example. Consider any discrete time
series fx0; x1; x2; . . . ; xNg of N entries that may represent,
e.g., the daily temperatures in a city or the stock prices of a
company or the budgets of Hollywood films. A record
happens at step i if the ith entry xi is bigger than all
previous entries x0; x1; . . . ; xi�1. Statistical questions that
naturally arise are the following: (a) How many records
occur in time N? (b) How long does a record survive?
(c) What is the age of the longest surviving record?, etc.
Understanding these aspects of record statistics is particu-
larly important in the context of current issues of climatol-
ogy such as global warming.

The mathematical theory of records has been studied for
over 50 years [9–12] and the questions posed in the pre-
vious paragraph are well understood in the case when the
random variables xi’s are independent and identically dis-
tributed (IID). Recently, there has been a resurgence of
interest in the record theory due to its multiple applications
in diverse complex systems such as spin glasses [13],
adaptive processes [14], and evolutionary models of bio-
logical populations [15,16]. The results in the record the-
ory of IID variables have been rather useful in these
different contexts. Recently, Krug has studied the record
statistics when the entries have nonidentical distributions
but still retain their independence [17]. However, in most
realistic situations the entries of the time series are corre-
lated. Surprisingly, very little is known about the statistics
of records for a correlated time series. In this Letter we take
a step towards this goal.

Of correlated time series fx0; x1; x2; . . . ; xNg, perhaps the
simplest and yet the most common with a variety of

applications [18], is the one where xi represents the posi-
tion of a random walker at discrete time i. The walker starts
at x0 at time 0 and at each discrete step evolves via xi �
xi�1 � �i where the noise �i represents the jump length at
step i. The jump lengths �i’s are IID variables each drawn
from a symmetric distribution ����. This also includes
Lévy flights where ���� � j�j�1�� is power-law distrib-
uted for large j�j with exponent 0<� � 2 and thus has a
divergent second moment. Even though the jump lengths
are uncorrelated, the entries xi’s are clearly correlated. This
time series corresponding to a discrete-time Brownian
motion appears naturally in many different contexts. For
example, in the context of queuing theory [19], xi repre-
sents the length of a single queue at time i. In the context of
the evolution of stock prices xi represents the logarithm of
the price of a stock at time i [20]. In this Letter, we
compute exactly the statistics of the number and the ages
of records in this correlated sequence and show that the
record statistics is universal, i.e., independent of the noise
distribution ���� as long as ���� is symmetric and
continuous.

It is useful to summarize our main results. The record
statistics are independent of the starting position x0 and
hence without any loss of generality we will set x0 � 0 and
also count the initial entry x0 � 0 as the first record. We
show that the probability P�M;N� of M records in N steps
(M � N � 1) is simply

 P�M;N� �
2N �M� 1

N

� �
2�2N�M�1; (1)

which is universal for all M and N. The moments are also
naturally universal and can be computed for all N. In
particular, for largeN, the mean and the variance behave as

 hMi �
2����
�
p

����
N
p

; hM2i � hMi2 � 2
�
1�

2

�

�
N; (2)

while the skewness, defined as the third central moment
divided by the variance raised to the 3=2-power, goes to a
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constant value 4�4� ���2�� 4��3=2. We also show that
the age statistics of the records is universal for all N.
Evidently, the mean age of a typical record grows, for
large N, as hli � N=hMi �

�������������
�N=4

p
� 0:8862

����
N
p

. We
also compute the extreme age statistics, i.e., ages of the
records that have, respectively, the shortest and the longest
duration. These extreme statistics are also universal. While
the mean longevity of the record with the shortest age
grows, for large N, as hlmini �

����������
N=�

p
� 0:5642

����
N
p

, that
of the longest age grows faster, hlmaxi � cN where c is a
nontrivial universal constant

 c � 2
Z 1

0
dy log

�
1�

1

2
����
�
p ���1=2; y�

�
� 0:626 508 . . .

(3)

where ���1=2; y� �
R
1
y dxx

�3=2e�x. The universality of
these results can be traced back to the Sparre Andersen
theorem on the first-passage property of random walks.

Let us consider any realization of the random-walk
sequence fx0 � 0; x1; x2; . . . ; xNg (see Fig. 1), where xi �
xi�1 � �i and �i’s are IID variables each drawn from the
distribution ����. Let M be the number of records in this
realization. Let ~l � fl1; l2; . . . ; lMg denote the time inter-
vals between successive records. Thus li is the age of the
ith record; i.e., it denotes the time up to which the ith
record survives. Note that the last record, i.e., the Mth
record, still stays a record at the Nth step since there are
no more record breaking events after it. Our aim is to first
calculate the joint probability distribution P�~l;MjN� of the
ages ~l and the number M of records, given the length N of
the sequence. For this, we need two quantities as inputs.
First, let q�l� denote the probability that a walk, starting
initially at x, stays above (or below) its starting position x
up to step l. Clearly q�l� does not depend on the starting
position x. A nontrivial theorem due to Sparre Andersen
[21] states that q�l� � �2ll �2

�2l is universal for all l, i.e.,
independent of ���� as long as ���� is symmetric and
continuous. Its generating function is simply

 ~q�z� �
X1
l�0

q�l�zl �
1������������

1� z
p : (4)

Our second input is the first-passage probability f�l� that
the walker crosses its starting point x for the first time
between steps (i� 1) and i. Evidently, f�l� � q�l� 1� �
q�l� with l 	 1 is also universal and its generating function
is

 

~f�z� �
X1
l�1

f�l�zl � 1� �1� z�~q�z� � 1�
������������
1� z
p

: (5)

Armed with these two ingredients q�l� and f�l�, one can
then write down explicitly the joint distribution of the ages
~l and the number M of records

 P�~l;MjN� � f�l1�f�l2� . . . f�lM�1�q�lM��PM
i�1

li;N
; (6)

where we have used the Markov property of random walks
which dictates that the successive intervals are statistically
independent, subject to the global sum rule that the total
interval length is N (see Fig. 1). Note that since the Mth
record is the last one (i.e., no more records have happened
after it), the interval to its right has distribution q�l� rather
than f�l�. One can check that P�~l;MjN� is normalized to
unity when summed over ~l and M. Since q�l� and f�l� are
universal due to the Sparre Andersen theorem, it follows
that P�~l;MjN� and any of its marginals are also universal.

Let us first compute the probability of the number of
records M, P�MjN� �

P
~lP�
~l;MjN�. To perform this sum,

it is easier to consider its generating function. Multiplying
Eq. (6) by zN and summing over ~l, one gets

 

X1
N�M�1

P�MjN�zN � 
~f�z��M�1 ~q�z� �
�1�

������������
1� z
p

�M�1������������
1� z
p :

(7)

By expanding in powers of z and computing the coefficient
of zN , we get our first result in Eq. (1). One can also easily
derive the moments ofM from Eq. (7). For example, for the
first three moments we get
 

hMi � �2N � 1�
2N

N

 !
2�2N; hM2i � 2N � 2� hMi;

hM3i � �6N � 6� �7� 4N�hMi: (8)

The large-N behavior in Eq. (2) can then be easily de-
rived from Eq. (8) by using Stirling’s approximation. In
Fig. 2, we demonstrate this universality by computing from
simulations hMi for three different distributions ����
(i) uniform in [� 1=2, 1=2] (ii) Gaussian with zero mean
and unit variance and (iii) Cauchy or Lorentzian: ���� �
��1=�1� �2�, which is an example of a Lévy flight. We
then compare the data with the exact formula in Eq. (8).
The agreement is excellent and one cannot distinguish
between the four curves for any value of N.

FIG. 1. A realization of the random-walk sequence fx0 �
0; x1; x2; . . . ; xNg of N steps with M records. Records are shown
as black dots. fl1; l2; . . . ; lMg denotes the time intervals between
successive records.

PRL 101, 050601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
1 AUGUST 2008

050601-2



It is also interesting to compare this statistics of M for
the random-walk sequence with that of the IID sequence
where each entry xi is a random variable drawn from
some distribution p�x�. In the latter case, it is well known
[10] that the distribution of the number of records P�MjN�
does not depend on p�x�, and for large N, it approaches
a Gaussian, P�MjN� � exp
��M� logN�2=2 logN�, with
mean hMi � logN and the standard deviation � �

�����������
logN
p

.
Thus, fluctuations ofM are small compared to the mean for
large N. In contrast, for the random-walk sequence, it
follows from Eq. (2) that both the mean and the standard
deviation grow as

����
N
p

for large N and thus the fluctuations
are large and comparable to the mean. This suggests that in
the random-walk case P�MjN� has a scaling form for large
M and N, P�MjN� � N�1=2g�MN�1=2�. One can indeed
prove this by analyzing Eq. (7) in the scaling limit and finds
g�x� � e�x

2=4=
����
�
p

.
While the typical age of a record grows as hli �

N=hMi � N1=2 for large N, there are rare records whose
ages follow different statistics. For example, what is age
distribution of the longest lasting and the shortest lasting
records? These extreme statistics of ages can also be
derived from the joint distribution in Eq. (6) and hence
they are independent of ����.

We first consider the longest lasting record with age
lmax � max�l1; l2; . . . ; lM�. It is easier to compute its cu-
mulative distribution F�njN�, i.e., the probability that
lmax � n given N. Now, if lmax � n, it follows that li � n
for i � 1; 2; . . . ;M. Thus, we need to sum up Eq. (6) over
all li’s and M such that li � n for each i. As usual it is
easier to carry out this summation by considering the
generating function and we get

 

X
N

F�njN�zN �

Pn
l�1 q�l�z

l

1�
Pn
l�1 f�l�z

l : (9)

Extracting the distribution F�njN� from this general ex-
pression is somewhat cumbersome and we do not present
the details here [22]. However, one can extract the asymp-
totic large-N behavior of the average hlmaxi �

P
1
n�1
1�

F�njN�� from Eq. (9) using the explicit form of q�l� and
f�l�. Skipping details [22], we find that for large N, the
mean age of the longest lasting record grows linearly with
N, hlmaxi � cN where c � 0:626 508 . . . is a universal con-
stant given in Eq. (3). Thus, the age of the longest record
(�N) is much larger than the typical age (�

����
N
p

) for large
N. Interestingly, exactly the same constant c has appeared
before in a different context [23,24].

The statistics of the longest record for IID variables
follows a similar asymptotic behavior hlmaxi � c1N but
with the prefactor [22]

 c1�
Z 1

0
dxexp

�
�x�

Z 1
x
dy
e�y

y

�
�0:624330... ; (10)

which also describes the asymptotic linear growth of the
longest cycle of a random permutation and is known as the
Golomb-Dickman or Goncharov’s constant (see [25]). This
result for IID variables also emerged recently in the context
of a growing network model [26]. Interestingly, the con-
stant c � 0:626 508 . . . for random walks is quite close to
the Golomb-Dickman constant. It turns out that although
the two problems (IID variables and random walks) have
some common features (at least qualitatively), the origin of
universality is quite different in the two problems [22].

For the record of the shortest duration lmin�
min�l1;l2; . . . ;lM�, one finds that the generating function
of the cumulative distribution G�njN� denoting the proba-
bility that lmin 	 n is given by

 

X
N

G�njN�zN �

P
1
l�n q�l�z

l

1�
P
1
l�n f�l�z

l : (11)

One can then extract, in a similar way, the asymptotic
large-N behavior of hlmini �

����������
N=�

p
[22]. Thus, the mean

age of the shortest lasting record grows in a similar way as
that of a typical record, albeit with a smaller prefactor
1=

����
�
p
� 0:5642 . . . compared with

���������
�=4

p
� 0:8862 . . . ,

respectively.
We have verified the results for hlmini and hlmaxi numeri-

cally for the case of jump distribution ���� uniform in
[�1=2, 1=2], simulating 109 samples containing 104 steps
each. We kept track of the largest and smallest interval
between records (including the final incomplete time in-
terval) for each value of N, and calculated the average over
all the runs. The results are shown in Fig. 3, where we plot
hlmini=

����
N
p

and hlmaxi=N, in the first case vs 1=
����
N
p

, and in
the second case vs 1=N; making plots this way, we find that
the data fall on a nearly straight line as N ! 1 in each
case. The intercepts, 0.564 80 and 0.626 52, agree closely

0 200 400 600 800 1000
N

0

10

20

30

40

〈M
〉

FIG. 2 (color online). The top curve actually contains four
different curves denoting hMi vs N for (i) uniform (ii) Gauss-
ian (iii) Cauchy distributions for ���� and also (iv) the exact
result in Eq. (8). The four curves are indistinguishable. The
bottom curve shows hMi vs N for the lattice random walk with
�1 steps, i.e., when ���� � 
��;1 � ��;�1�=2, and agrees with
the Eq. (13).
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with the predictions,
���������
1=�

p
� 0:564 190 . . . and 0.626 508,

respectively.
We also considered the discrete (noncontinuous) case

where the walk jumps by � � �1 at each time step. For
this case we find

 

X1
N�0

hMizN �

������������
1� z
p

�
������������
1� z
p

2�1� z�3=2
; (12)

which implies

 hMi �
1

2

�
1�
��1�N�1��N � 1

2�2F1�
3
2 ;�N; 3

2� N;�1�

2
����
�
p

��N � 1�

�
;

(13)

where 2F1 is the hypergeometric function, implying hMi �
1, 3=2, 7=4, 2, 35=16, for N � 0, 1, 2, 3, 4. For large N,
hMi �

�������������
2N=�

p
, which is 1=

���
2
p

of the expression for the
mean in the continuous case. We also find hlmaxi � cN, and
hlmini �

�������������
2N=�

p
, which are, respectively, equal to, and

���
2
p

times, the corresponding expressions for the continuous
case. These results were also verified in a simulation.

In conclusion, we have shown that the record statistics of
a time series generated by a Markov process (random
walk) are independent of the details of the walk distribu-
tion when that distribution is continuous and symmetric.
Walks with a discrete jump distribution show similar
asymptotic behavior but in general with different coeffi-
cients. The results should be useful in analyzing a broad
class of physical phenomena and are relevant, for example,
to analyzing questions of climate change. A possible future
problem is the calculation of record statistics for nonsym-
metric random jumps (with a drift)—such as would be the
case for a warming trend.
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