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We analyze the statistical properties of the entanglement of a large bipartite quantum system. By
framing the problem in terms of random matrices and a fictitious temperature, we unveil the existence of
two phase transitions, characterized by different spectra of the reduced density matrices.
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The bipartite entanglement of small quantum systems
(such as a pair of qubits) can be given a quantitative
characterization in terms of several physically equivalent
measures, such as entropy and concurrence [1]. The prob-
lem becomes more complicated for larger systems and/or
higher dimensional qudits [2]. The interest of characteriz-
ing entanglement for these systems is twofold: on one
hand, it has fascinating links with complexity [3] and a
related definition of multipartite entanglement [4]; on the
other hand, it has applications in quantum information and
related fields of investigation [5].

In this Letter we intend to characterize the statistics of
the entanglement of a large quantum system. We shall
tackle this problem by studying a random matrix model
that describes the statistical properties of the purity of a
bipartite quantum system. In the context of quantum infor-
mation this model was introduced in [6,7] in order to
describe the statistics of the eigenvalues of the reduced
density matrix of a subsystem and extract the first moments
of some quantities of interest, like the entanglement en-
tropy or the purity. We will obtain the exact generating
function of the purity in the limit of large space dimension
(large N in the matrix model) and will connect the entropy
with the volume of the manifolds with constant purity
(isopurity manifolds). We will also show that the matrix
model undergoes two phase transitions: one at a negative
and one at a positive (fictitious) temperature. The phase
transition at negative temperature will be paralleled to
another one, that is well known in the study of random
matrix models and conformal field theory literature [8]. We
notice that techniques related to those presented in this
Letter have been recently employed [9] to analyze the
statistics of the lowest eigenvalue of the reduced density
matrix.

Consider a bipartite system in the Hilbert space H �
H A �H B, with dimH A � N � dimH B � M. Assume
that the system is in a pure state j i 2H . The reduced
density matrix of subsystem A reads

 �A � TrBj ih j (1)

and is a Hermitian, positive, unit-trace N � N matrix. Its
purity

 �AB � TrA�
2
A 2 �1=N; 1� (2)

is a good measure of the entanglement between the two
subsystems: its minimum is attained when all the eigen-
values are equal to 1=N (completely mixed state, maximal
entanglement between the two bipartitions), while its
maximum detects a factorized state (no entanglement).
We consider a typical pure state j i [6,7], sampled accord-
ing to the unique, unitarily invariant Haar measure. The
significance of this measure can be understood in the
following way: let us fix a state vector j 0i and consider
a random unitary transformation j i � Uj 0i. In the least
set of assumptions onU one obtains the Haar measure onU
which induces a uniform measure on j i, independent of
j 0i. By tracing over subsystem B, this measure translates
into the measure over the space of Hermitian, positive
matrices of unit trace [6,7]
 

d���A	 �D�A�det�A	M�N��1� Tr�A	;

� dN�
Y
i<j

��i � �j	2
Y
‘

��N‘ �
�
1�

X
k

�k

�
; (3)

where �k are the positive eigenvalues of �A (Schmidt
coefficients), we dropped the volume of the SU�N	 group
(which is irrelevant for our purposes) and �N 
 M� N.

We will consider the statistical properties of the rescaled
quantity

 R � RAB � N3�AB: (4)

The moments of this function can be obtained by lengthy,
direct calculations. We will propose a different approach
that makes use of a partition function:
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 Z AB �
Z
d���A	 exp���RAB	; (5)

where � is a fictitious temperature. This approach is easily
generalizable to any other measure of entanglement. In
particular for � � 0 one obtains typical states, while for
larger values of � one gets more entangled states (for �!
1 maximally entangled states).

Henceforth, we will assume N � 1. We will analyze in
detail the case � � 0 and then give the results for M�
N � �N > 0. Our problem has been translated into the
study of random (reduced) density matrices �A with

 Z AB �
Z
�i>0

dN�
Y
i<j

��i � �j	2�
�

1�
XN
i�1

�i

�
e
��N3

P
i

�2
i
:

(6)

As a first step, we introduce a Lagrange multiplier for the
delta function

 Z AB � N2
Z d�

2�

�
Z
�i>0

dN�e
iN2��1�

P
i

�i	��N3
P
i

�2
i�2

P
i<j

lnj�i��jj

:

(7)

By assumingN large we can look for the stationary point of
the exponent with respect to both the �i’s and �. The
contour of integration for � lies on the real axis but we
will soon see that the saddle point for � lies on the
imaginary � axis. It is then understood that the contour
needs to be deformed to pass by this point parallel to the
line of steepest descent. The saddle point equations are

 � 2�N3�i � 2
X
j�i

1

�i � �j
� iN2� � 0; (8)

 

X
i

�i � 1: (9)

In the limit of large N, by adopting the natural scaling

 �i �
1

N
��xi	; 0< xi �

i
N
� 1; (10)

we can write Eq. (8) as

 � ����
Z 1

0
d�0

���0	
�� �0

� i
�
2
� 0; (11)

where

 ���	 �
Z 1

0
dx���� ��x	� (12)

is the density of eigenvalues. A similar equation, restricted
at � � 0, was studied by Page [7].

We start at high temperatures � 1 and assume a
solution of the form [10] (see Fig. 1)

 ���	 �
�
�

�
b
2
� �

� �������������
a� �
�

s
; (13)

for 0 � � � a and 0 otherwise. This form satisfies the
integral equation as can be promptly verified. The
Lagrange multiplier � is related to the parameters a, b by
� � i��a� b	, and it is purely imaginary, as anticipated.

We can find a, b by imposing normalization and the
constraint, which derive from (12) and (9),

 

Z a

0
d����	 � 1;

Z a

0
d����	� � 1: (14)

By imposing the form (13) we find

 

�
8
a�a� 2b	 � 1;

�
16
a2�a� b	 � 1: (15)

For �� <�<�� with

 �� � �2=27; �� � 2; (16)

there is a unique solution of these equations that yields real,
positive ���	:

 a��	 �

�������
8

3�

s �
��

1

�

�
; b��	 �

4

�a
�
a
2
; (17)

where � � �
������������������
��=��

p
�

����������������������
1� �=��

p
	1=3. The average

purity is given by

 h�ABi �
R

N3 �
X
i

�2
i �

1

N
�

128
a3�5a� 4b	: (18)

By using (17) one shows that R�� � 0	 � 2N2, R���	 �
5N2=4 and R���	 � 9N2=4 (see later for the significance
of this values).

One can also compute the free energy

 F � R�
2N2

�

Z 1

0
dx
Z x

0
dy logj��x	 � ��y	j (19)

and using the saddle point equations (11) it is possible to
show that

 

Z
d����	

Z
d�0���0	 logj�0 � �j �

Z
d����	

�
log�� �

�2

2
� i

�
2
�
�
; (20)

where we also used (14), and obtain

 

F

N2
�

1

8
�6� a	a�

2� a log�a=4	

a�
�

3a4�
256

; (21)

in terms of the function a��	 introduced above.

Notice that �F is the generating function for the con-
nected correlations of R. The radius of convergence in the
expansion around � � 0 defines the behavior of the late
terms in the correlations.

One can find the values of all the cumulants of R, �AB
(or connected correlations, the derivatives of logZAB) in
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the unbiased distribution at � � 0, when ���	 �
�1=2�	

���������������������
�4� �	=�

p
. One starts by observing that a series

expansion of (17) yields

 a��	 �
X
l�0

4l�131�3l �3l� 1	!

�2l� 1	!�l� 1	!

�
�
��

�
l
: (22)

By making use of this expression one finds

 hh�nABii � �
��1	n

N3n

@n

@�n
��F	

���������!0
�

2n�1

N3n�2

�3n� 3	!

�2n	!
:

(23)

The first three cumulants are of course the large-N limits of
known results [6] (for small N exact expressions for the
first 5 cumulants can be also found in [11]).

We are now ready to unveil the presence of two phase
transitions. The most evident one is at the end of the radius
of convergence of the small � expansion, which occurs at
��. We can extend our equations smoothly down to�� but
not below. At �� we have ���	 � 2=�27�	�6� �	3=2=

����
�
p

and �AB � 9=4N (see Figs. 1 and 2). The derivative at the
right edge of eigenvalue density vanishes and some eigen-
values can evaporate to �1 [12]. The limits �! �� and
N ! 1 can be combined (double-scaling limit) to inter-
pret the free energy as the partition function of random
2D surfaces (a theory of pure gravity). Using (23) we see
that around �� the free energy F / ��� ��	5=2 �
less singular [8]. In fact, if one relaxes the unit-trace
condition, our partition function ZAB has been studied in
the context of random matrix theories [13]. The objects
generated in this way correspond to chequered polygona-
tions of surfaces. Our calculations show that the constraint
Tr�A � 1 is irrelevant for the critical exponents.

The other phase transition occurs as � is increased (the
temperature decreased). The value of b decreases contin-
uously and eventually vanishes at �� (where �AB �
5=4N), becoming b < 0 for �> ��. The solution (13) is
not valid anymore, since ���	 becomes negative for � <

�b=2. We have to look for another solution, and, by noting
that at ��, ���	 � ���=�	

�������������������
��2� �	

p
(see Fig. 1), we do

so in the usual semicircle form

 ���	 �
�
�

�������������
�� b
p �������������

a� �
p

: (24)

The normalization and the constraint yield

 

�
8
�a� b	2 � 1;

�
16
�a� b	2�a� b	 � 1: (25)

This can be easily solved to find

 a � 1�

�������
��
�

s
; b � 1�

�������
��
�

s
(26)

and hence

 R � N2

�
1�

1

2�

�
: (27)

Moreover, from (19) and (20), one gets

 

F

N2
� 1�

3

4�
�

1

2�
log�2�	: (28)

We can now notice how the phase transition at �� is due to
the restoration of a Z2 symmetry P (‘‘parity’’) present in
Eq. (11), namely, the reflection of the distribution ���	
around the center of its support (� � a=2 for � � �� and
1 for �>��). For � � �� there are two solutions linked
by this symmetry, and we picked the one with the lowest F;
at�� these two solutions coincide with the semicircle (24),
which is invariant under P and becomes the valid and
stable solution for higher �.

The expression for the entropy S � ��R� F	, which
counts the number of states with a given value of the purity,
is obtained from Eqs. (18), (21), (27), and (28). In the
critical region, �! ��, we find
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FIG. 2 (color online). h�ABi as a function of the inverse
temperature. Notice the value h�ABi � 2=N at � � 0 (typical
states). In the �! 1 limit we find the minimum h�ABi � 1=N.
The phase transitions described in the text are at �� � �2=27,
h�ABi � 9=4N (left point) and �� � 2, h�ABi � 5=4N (right
point).
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FIG. 1 (color online). Density of eigenvalues at different tem-
peratures. The phase transitions occur at �� � 2 and at �� �
�2=27.
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S

N2
��

1

4
� log2�

�� ��
4

� ���� ��	
��� ��	2

16
;

(29)

where � is the step function. We see that S is continuous at
the phase transitions, together with its first derivative
although the second derivative is discontinuous. So this is
a second order phase transition.

Notice that the entropy is unbounded from below when
�! �1. The interpretation of this result is quite straight-
forward: the minimum value of �AB is reached on a sub-
manifold (isomorphic to SU�N	=ZN [14]) of dimension
N2 � 1, as opposed to the typical case vectors which
form a manifold of dimension 2N2 � N � 1 in the
Hilbert space H . Since this manifold has zero volume in
the original Hilbert space, the entropy, being the logarithm
of this volume, diverges.

With the same techniques, starting from (3) we can find
the cumulants of the purity for unbalanced bipartitions.
Leaving the details for a forthcoming publication we report
the results for the first five cumulants only:
 

h�ABi�
1

N
2��
1��

; hh�2
ABii�

1

N4

2

�1��	2
;

hh�3
ABii�

8

N7

2��

�1��	4
; hh�4

ABii�
48

N10

6�6���2

�1��	6
;

hh�5
ABii�

384

N13

22�33��13�2��3

�1��	8
; (30)

where � � �M� N	=N. For � � 0 these reduce to the
results of the previous section.

Conclusions.—We have calculated the generating func-
tion of a typical entanglement measure, averaged over the
Hilbert space. We have shown that, when interpreted as a
partition function, it possesses multiple phase transitions.
In the different phases the distribution of Schmidt coeffi-
cients have different profiles. Sudden changes of these
profiles occur at the phase transitions.

We have studied these phase transition(s) as a function
of a fictitious temperature �, introduced to define the
generating function of the purity. This fictitious tempera-
ture can also be thought of as localizing the measure on set
of states with entanglement larger or smaller than the
typical one [14] (in the same way temperature is used in
classical statistical mechanics to fix the energy to a given
value in the thermodynamic limit).

Notice that the phase transitions investigated here, that
appear in the study of the generating functions of any
entanglement measure, are not quantum phase transitions
(QPT). Since entanglement is known to be a good indicator
of QPTs [15], it would be interesting to investigate the link,
if any, between these different transitions.

In conclusion, by using techniques borrowed from the
study of random matrix theory, we gave a complete char-
acterization of the statistics of one entanglement measure.

We also proposed one direction in which random matrix
theory is likely to play a significant role in the study of
entanglement, namely, the role of the phase transitions
found in random matrix theory as describing the change
in the profile of typical, less or more entangled states.
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