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The effect of the Gouy phase, which is one of the geometrical phases of photons, is observed through
quantum correlation in Laguerre-Gaussian (LG) modes. In an experiment, the relative phase of two
different LG modes of measurement basis states is manipulated via the Gouy phase, and the observed
coincidence count rates agree well with theoretical predictions. This result suggests that the Gouy phase
can be used as a new tool to manipulate multidimensional photonic quantum states.
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Manipulation of photonic quantum bits, or qubits, is
critical in many important applications in quantum infor-
mation processing, including quantum key distribution [1],
quantum computing [2], dense coding [3], and teleporta-
tion [4]. Furthermore, interest in multidimensional pho-
tonic quantum states, or qunits, has grown recently because
of the potential they have to realize new types of quantum
communication protocols [5–7]. For realizing multidimen-
sional states, photons in Laguerre-Gaussian (LG) modes
have been attracting a lot of attention recently [8–12]. LG
modes form an orthogonal basis set of paraxial solutions to
the wave equation and have screw phase dislocations
exp�il’�, where l is referred to as the azimuthal mode
index. Photons in LG modes have orbital angular momen-
tum l@ [13,14].

Gouy phase shift is another interesting characteristic of
photons in LG modes [15,16]. The Gouy phase shift is the
axial phase shift that converging photons experience as
they pass through the waist of the beam, and it is propor-
tional to the azimuthal mode index l. In a paper [17], the
Gouy phase shift is introduced as a manifestation of gen-
eral Berry’s phase [18]. Recently, Gouy phase shifts have
been observed directly [19–22] or using an inteferometric
technique [23]. However, neither the effect of Gouy phase
for entangled state nor the manipulation of photonic quan-
tum states using Gouy phase has been reported.

In this Letter, we propose a method for manipulating the
quantum state of photons in LG modes using the Gouy
phase shift and apply this method to observe the quantum
correlation in LG modes of photons. In our method, the
Gouy phase shift of LG modes is controlled by translating
the beam waist position. Since the Gouy phase shift is
proportional to the azimuthal mode index l of the phase
dislocation, it is in principle possible to manipulate the
relative phases between more than two LG modes (i.e., l �
0; 1; 2; . . . ) simultaneously.

Furthermore, we experimentally confirm the manipula-
tion of Gouy phase shift through the entanglement of two
photons generated via spontaneous parametric down con-
version (SPDC). One of the two photons entangled in LG

modes is detected as a superposition state between two
different LG modes (l � 0 and 1) with a Gouy phase shift,
while the amplitudes and phases of the measurement basis
state of the other photon are scanned two-dimensionally
using the conventional method [24]. From the two-
dimensional (2D) map of the coincidence count rates, the
observed phase shift agrees well with that predicted by
theory. The direct observation of the Gouy phase shift,
which is one of the geometric phases of photons, through
quantum entanglement is interesting both in terms of fun-
damental physics and new technological applications.

The normalized LG mode with a beam waist located at
z � z0 is given in cylindrical coordinates by
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where (�, ’, z) denote cylindrical coordinates, k is the
wave number, and Ljljp �x� is the generalized Laguerre poly-
nomial. l is the azimuthal mode index, and p is the radial
mode index, which is related to the number of radial nodes.
The parameters R�z�, !�z�, and �pl�z� denote the radius
curvature of wave fronts, the beam radius, and the Gouy

phase at the propagation distance z, respectively: !�z� �

!0
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, R�z� � zf1� �zR=�z� z0��
2g,

�pl�z� � �2p� jlj � 1� arctan��z� z0�=zR� with the
Rayleigh range: zR � k!2

0=2, where !0 is the radius of
the beam waist.

A photon state in LGpl mode with a beam waist at z � z0

that has a radius of !0 is given by [25,26]

 jpl�!0; z0�i �
Z
dr?LGpl�r?; z;!0; z0�a

y�r?; z�j0i; (2)

where r? � ��;’�, j0i is the vacuum state and ay�r?; z� is
the creation operator of a single photon at position (r?, z).
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Equation (2) implies that the phase of the photonic state in
a certain LGpl mode depends on the position of the beam
waist, mainly due to the Gouy phase shift �pl in Eq. (1).

Next, we explain how the relative phase between differ-
ent LG modes can be controlled using Gouy phase.
Figure 1 shows a plot of Gouy phase �0l�z� for l � 0, 1,
and 2. The beam waist is located at z � 0. As the mea-
surement position z moves from�1 to1, �0l�z� changes
from ��l=2 to �l=2. Thus, the phase difference ���z�
between the two LG modes l � 0 and l � 1 changes from
��=2 to �=2. This means that the phase difference at a
certain point between the two LG modes can be varied by
moving the beam waist position, i.e., by scanning the
position of the focusing lens. This phase control can be
used between more than two LG modes.

Figure 2 shows the experimental setup to observe quan-
tum correlation in LG modes using Gouy phase shift. The
photon pairs are produced by SPDC using a �-barium
borate (BBO) crystal. The pump light is focused by Lp;
the beam waist is located in the plane of a thin BBO crystal
with a beam radius of !p. In the idler path, the relative
phase of the measurement mode is manipulated by scan-
ning the hologram HI two-dimensionally; by contrast, in
the signal path, it is manipulated using the Gouy phase shift
by varying the longitudinal position of LS1. We then ana-
lyzed the coincidence events between two photon counters
DI and DS.

In the following, we outline the derivation of coinci-
dence count probabilities [27] taking the effect of Gouy
phase into account. When the pump beam is in LG00 mode,
the two-photon state at the plane of the thin quadratic BBO
crystal can be written as [25,28]

 j�i �
X1
l��1

X1
p;p0�0

Clpp0 jp� l�!0I; 0�iSjp0l�!0I; 0�iI; (3)

where!0I is the beam radius of the set of LGpl modes used
for expansion. The amplitude Clpp0 is determined by the

ratio of!0I to!p. Here, the direction of z is the same as the
propagation direction of the pump beam, and its origin
(z � 0) is at the thin BBO crystal.

Although !0I can be arbitrarily selected for calculation,
we chose an appropriate value for !0I in order to simplify
the analysis. Since we use single mode fibers before the
photon detector, only photons in a particular LG00 mode
coupled to the fiber are counted. Thus, basically this LG00

mode back-propagated through the lenses and holograms
to the BBO crystal can be considered as the measurement
mode. In the idler path, the beam waist of this back-
propagated mode is first positioned at the hologram HI,
and then the first-order diffraction beam is focused by the
lens LI1 so that the waist of the second beam is located at
the crystal. In the absence of phase modulation by the
hologram, the radius of the waist of the second beam will
be !00I. However, we have to carefully consider the effect
of the hologram. When a LG00 mode is diffracted by HI, a
displaced phase singularity is added and the mode becomes
a superposition of an infinite number of LGpl modes [11].
Fortunately, however, it can be well approximated by a
superposition of only LG00 and LG01 modes when the
beam radius of the diffracted mode is chosen to be 0.8
times that of the incident mode, with the sum of the mode
weight of LG00 and LG01 being no less than 85.9% [27].
Therefore, in the subsequent analysis, we choose !0I �
0:8!00I. Under this approximation, the idler path’s mea-
surement mode at the plane of the BBO crystal can be
written as

 jIbasis�rI; �I�i / e
�i�I�I�rI�j00�!0I; 0�iI

� �I�rI�j01�!0I; 0�iI; (4)

where (rI, �I) is the position of the dislocation of the
hologram HI from the central axis of the back-propagated
LG00 mode (inset of Fig. 2). The amplitude �I�rI� and
�I�rI� are real functions of rI which are either positive for
all values of rI or always negative for all values of rI. The
relative phase between the two states depends only on �I.

FIG. 1 (color online). (a) Variation of beam diameter with
propagation distance z for a LG beam focused by a lens;
(b) Plot of �00, �01 and �02 against z.

FIG. 2 (color online). The experimental setup for observing
quantum correlation using Gouy phase shift. The inset shows the
hologram pattern as viewed from the BBO crystal.
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When a photon is detected in the idler path, the projected
mode in the signal path in the plane of the BBO crystal can
be calculated as the inner product of Eqs. (3) and (4). For
!0I=!p � 0:35, which is the condition used in our experi-
ment, the amplitude when p 	 1 is negligibly small [29].
By using this approximation, the projected mode in signal
path can be written as
 

jSstate�rI; �I�i / ei�IC
0
00�I�rI�j00�!0I; 0�iS

� C1
00�I�rI�j0� 1�!0I; 0�iS: (5)

Similarly, measurement mode in the signal path reads
 

jSbasis�rS; �S�i / e
i�S�S�rS�j00�!0S; z0S�iS

� �S�rS�j0� 1�!0S; z0S�iS; (6)

where (rS, �S) is the position of the dislocation of HS from
the central axis of the back propagated mode, z0S is the
beam waist position of the measurement mode, and !0S is
determined in the same way as !0I, i.e., !0S � 0:8!00S
where!00S is the radius of the back-propagated mode in the
absence of modulation by the hologram.

From Eqs. (5) and (6), and by executing four overlap
integrations, we obtain an expression for the coincidence
probability as follows:

 P � jhSbasis�rS; �S�jhIbasis�rI; �I�j�ij2

/ A� B cos
�
� arctan

�
z0S

zRI � zRS

�
� �I � �S

�
; (7)

where zRI and zRS are, respectively, the Rayleigh range
of the measurement mode in the idler and signal paths, and
A and B are positive real numbers [30]. At �max

I � �S �
arctan�z0S=�zRI � zRS��, P is a maximum, and at �min

I �
�max
I � �, P is a minimum. Since arctan is a monotonic

function, �max
I and �min

I change monotonically with z0S.
This implies that the maximum and minimum positions
rotate when z0S is scanned.

In the experiment (Fig. 1), a cw argon-ion laser (wave-
length: 351 nm; power: 60 mW) was focused by the lens
Lp (f � 900 mm) to the beam radius!p � 178 �m in the
BBO crystal (Type I, thickness: 3 mm). The lenses LS1 ,
LI1, LS2, and LI2 had f � 200 mm. The distance from the
BBO crystal to the hologram HS (HI) was 1030 mm. The
holograms (2 mm �, pitch: 6:3 �m) were made by fab-
ricating the structure on a thin polymer layer on a glass
substrate using an electron beam writer, and then coating
with gold [31]. FI and FS were narrow band-pass filters
(702 nm, FWHM: 4 nm). The photons were coupled to
single mode fibers and detected by single photon detectors
DS and DI (AQR-FC, Perkin Elmer). By changing the
position of LS1, we measured the coincidence counting
rates while scanning the position of HI two dimensionally
[24]. The vertical and horizontal positions were shifted in
steps of 7 �m for a grid consisting of 21� 21 points.

Figures 3(a)–3(g) are coincidence count rate results
obtained for seven different positions of lens LS1, shown
as 2D maps of the position of hologramHI. The position of
hologram HS was fixed at �rS; �S� � �27 �m; 0�. The
count rates (C) are normalized using the minimum and
maximum count rates (Cmin, Cmax) in each map [i.e.,
Cnorm � �C� C

min�=�Cmax � Cmin�]. The typical mini-
mum and maximum count rates are approximately 10
and 600 counts/s, respectively. The horizontal (vertical)
axis denote the horizontal (vertical) position of HI, in each
2D map. z0S was determined experimentally using back-
propagated light (reference light) with a wavelength
(680 nm) close to that of the signal or idler photons
(702 nm).

It can be clearly seen in Fig. 3 that the positions of
maximum or minimum coincidences rotate clockwise
around the origin as the position of the beam waist in
signal path (z0S) is scanned in the pump beam direction.
The azimuthal coordinate of the maximum (minimum) in
the 2D map indicates the phase of the two measurement
basis states in the idler mode given by Eq. (4) where the
maximum (minimum) coincidence events occurred. This
result shows that the relative phase of the LG00 and LG0�1

measurement basis states in the signal path changed as the
beam waist z0S was displaced. This phase is not explicit in
Eq. (6), but, as was previously discussed for Eq. (2), enters
through the Gouy phase shift �pl in Eq. (1). Because of the
quantum entanglement in Eq. (3), the phase changed on
rotation of the maximum or minimum position. The con-
tinuity of the change also proves the quantum coherence in
the correlation shown in Eq. (3).

To analyze the data in Fig. 3, we introduce parameter
�map which is the angle of a line segment between the
maximum and minimum coincidence points to the hori-
zontal axis (see Fig. 3). Figure 4 is a plot of �map (square)
against z0S.

FIG. 3 (color online). Maps of the normalized coincidence
count rates obtained by scanning hologram HI. The distances
between HS and LS1 were (a) 250 mm, (b) 255 mm,
(c) 257.5 mm, (d) 260 mm, (e) 262.5 mm, (f) 265 mm, and
(g) 270 mm.
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Noting that �max
I � �S � arctan�z0S=�zRI � zRS�� and

�min
I � �max

I � � obtained from Eq. (7), �map must be
�max
I theoretically. From this, we define the fitting function

for �map as follows:

 �fit
map � � arctan

�
z0S � zoffset

zRI � zRS

�
� �offset; (8)

where zoffset and �offset are the fitting parameters denoting
the offset of the beam waist position of the measurement
mode in the BBO crystal and in the holograms HI (or HS).
The solid line in Fig. 3 is the fitting result for �map. The
Rayleigh ranges were determined by using !0I;S �

0:8!00I;S, where measured beam radiuses of reference light
!00I � 78 �m and !00S � 70
 96 �m [32]. The gradient
of the fitting curve reproduces the experimental data well.

When a hologram is shifted and scanned to change the
phase between LG modes, the original superposition state
is not maintained but converted into the Gaussian mode.
On the other hand, our proposed method using Gouy phase
shift only changes the relative phase while preserving the
relative amplitudes of the original superposition states. In
this sense, our method provides a nondestructive method to
control relative phases for multidimensional photonic
states. It is also possible to extend our scheme for quantum
tomography and Bell inequality test using the superposi-
tion state of LG00 and LG02 modes.
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A. Zeilinger, Phys. Rev. Lett. 92, 167903 (2004).
[12] J. T. Barreiro et al., Phys. Rev. Lett. 95, 260501 (2005).
[13] H. He, M. E. Friese, N. R. Heckenberg, and H.

Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[14] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[15] C. R. Gouy, C. R. Acad. Sci. Paris Ser. IV 110, 1251

(1890).
[16] C. R. Gouy, Ann. Chim. Phys. Ser. 6, 24, 145 (1891).
[17] Simin. Feng, and H. Winful, Opt. Lett. 26, 485 (2001).
[18] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[19] A. B. Ruffin et al., Phys. Rev. Lett. 83, 3410 (1999).
[20] R. W. McGown, R. A. Cheville, and D. Grischkowsky,

Appl. Phys. Lett. 76, 670 (2000).
[21] F. Lindner et al., Phys. Rev. Lett. 92, 113001 (2004).
[22] J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, Opt.

Express 14, 8382 (2006).
[23] J. H. Chow, G. de Vine, M. B. Gray, and D. E. McClelland,

Opt. Lett. 29, 2339 (2004).
[24] D. Kawase, S. Takeuchi, K. Sasaki, A. Wada, Y.

Miyamoto, and M. Takeda, arXiv:quant-ph/0602199v1.
[25] Juan P. Torres, Yana Deyanova, Lluis Torner, and G.

Molina-Terriza, Phys. Rev. A 67, 052313 (2003).
[26] S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and L.

Allen, Phys. Rev. A 65, 033823 (2002).
[27] D. Kawase, Y. Miyamoto, M. Takeda, K. Sasaki, and

S. Takeuchi (to be published).
[28] J. P. Torres, A. Alexandrescu, and Lluis Torner, Phys.

Rev. A 68, 050301 (2003).
[29] The total amount of these components is less than 0.5%.
[30] Note that the denominator in the arctan in Eq. (7) is not

zRS but zRI � zRS. This is due to the entanglement of mode
properties (curvature and beam radius) in the signal and
the idler paths.

[31] Y. Miyamoto, M. Masuda, A. Wada, and M. Takeda, in
Proc. SPIE 3740, 232 (1999).

[32] !00S�z0S� are determined experimentally using the refer-
ence light, and zRS is derived using zR � k!2

0=2 with
!0S � 0:8!00S.

FIG. 4 (color online). Dependence of �map on the position of
beam waist z0S. The squares represent the measured data and the
solid line represents the fitting result. The error bars are deter-
mined based on the assumption that the minimum (maximum)
points exist in the areas 6.25% of the largest (smallest) coinci-
dence counts in Fig. 3.

PRL 101, 050501 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
1 AUGUST 2008

050501-4


