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Monte Carlo simulations of the SU(2)-symmetric deconfined critical point action reveal strong
violations of scale invariance for the deconfinement transition. We find compelling evidence that the
generic runaway renormalization flow of the gauge coupling is to a weak first-order transition, similar to
the case of U�1� � U�1� symmetry. Our results imply that recent numeric studies of the Nèel antiferro-
magnet to valence bond solid quantum phase transition in SU(2)-symmetric models were not accurate
enough in determining the nature of the transition.
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Within the standard Ginzburg-Landau-Wilson descrip-
tion of critical phenomena, a direct transition between
states which break different symmetries is expected to be
of first order. The existence of a generic line of deconfined
critical points (DCPs) proposed in Refs. [1–3]—an exotic
second-order phase transition between two competing or-
ders—remains one of the most intriguing and controver-
sial topics in the modern theory of phase transitions. In
particular, the DCP theory makes the prediction that cer-
tain types of superfluid to solid and the Nèel antiferromag-
net to valence bond solid (VBS) quantum phase transitions
in 2D lattice systems can be continuous. The new critical-
ity is in the same universality class as a 3D system of N �
2 identical complex-valued classical fields coupled to a
gauge vector field. This makes the DCP theory relevant
also for the superfluid to normal liquid transition in sym-
metric two-component superconductors [4].

An intrinsic difficulty in understanding properties of the
N-component DCP action is its runaway renormalization
flow to strong coupling at large scales and the absence of
perturbative fixed points for realistic N [5,6]. One may
only speculate that the value of N might be of little
importance since the possibility of the continuous transi-
tion for N � 1 is guaranteed by the exact duality mapping
between the inverted-XY and XY-universality classes [7],
and for N ! 1 it follows from the large-N expansion for
N of the order of a hundred. However, there are no exact
analytic results either showing that in a two-component
system there exists a generic line of second-order phase
transitions or proving that the second-order phase transi-
tion is fundamentally impossible. The problem of decon-
fined criticality for the most interesting case of N � 2 thus
has to be resolved by numerical simulations.

The initial effort was focused on models of the super-
fluid to solid quantum phase transitions and U�1� �
U�1�-symmetric DCP actions [1,8]. The first claims of
deconfined criticality were confronted with the observation

of weak first-order transitions in other models [9]. While
presenting a particular model featuring a first-order phase
transition does not prove the impossibility of a continuous
DCP yet, it does raise a warning flag. One needs to pay
special attention to any signatures of violation of the scale
invariance which may be indicative of a runaway flow to a
first-order transition even when all other quantities appear
to change continuously due to limited system sizes avail-
able in simulations [10]. The flowgram method [11] was
developed as a generic tool for monitoring such runaways
flow to strong coupling and was used to prove the generic
first-order nature of the deconfinement transition in the
U�1� � U�1�-symmetric DCP action. A subsequent refined
analysis resulted in the reconsideration of the original
claims in favor of a discontinuous transition for all known
models [12,13].

Recently, the SU(2)-symmetric case has been studied in
a series of papers [14–16], and an exciting observation of a
continuous DCP point was reported. However, the story
seems to repeat itself since renormalization flows for the
J-Q model studied in Refs. [14,15] were shown to be in
violation of scale invariance and, possibly, indicative of the
first-order transition [17]. Here we show that a runaway
flow to strong coupling and a first-order transition is a
generic feature of all SU(2)-symmetric DCP models analo-
gous to the U�1� � U�1� case [18].

We consider the lattice version of the SU(2)-symmetric
NCCP1 model [2,3] and map it onto the two-component
J-current model. The DCP action for two spinon fields za,
a � 1; 2, on a three-dimensional simple cubic lattice is
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where hiji runs over the nearest neighbor pair of sites i and
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j, the gauge field Ahiji is defined on the bonds, andr� A is
the lattice curl operator. The mapping to the J-current
model starts from the partition function Z �R
DzDz�DA exp��S� and a Taylor expansion of the ex-

ponentials expftz�aizaje
iAhiji g and expftz�ajzaie

�iAhiji g on all
bonds. One can then perform an explicit integration over
Ahiji, zai and arrive at a formulation in terms of integer non-

negative bond currents J�a�i;�. We use � � �1;�2;�3 to
label the directions of bonds going out of a given site, and
the corresponding unit vectors are denoted by �̂. These J
currents obey the conservation laws:
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The final expression for the partition function reads
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The long-range interaction Vij depends on the distance rij
between the sites i and j. Its Fourier transform is given by
Vq � 1=

P
��1;2;3sin2�q�=2� and implies an asymptotic be-

havior V 
 1=rij at large distances.
This formulation allows efficient Monte Carlo simula-

tions using a worm algorithm for the two-component sys-
tem [11]. Assuming periodic boundary conditions, we
introduce the winding numbers, which are nothing but
instant values of corresponding total currents in a given
direction: Wa;� �

P
jJ
�a�
j;�=L, with L being the sample

linear size. The mean square fluctuations of the winding
numbers provide superfluid stiffnesses [19]: �� �P
�h�W1;� �W2;��

2i=L 	 h�W2
�i=L. In particular, we fo-

cused on the gauge-invariant superfluid stiffness, �� mea-
suring the response to a twist of the phase of the product
z�1z2.

Similar to the U�1� � U�1� case [11], the NCCP1 model
features three phases (Fig. 1) characterized by the follow-
ing order parameters: VBS: an insulator with hzaii � 0
and, accordingly, h��i � h��i � 0; 2SF: two-component
superfluid (2SF) with hzaii � 0, h��i � 0, and h��i � 0;
SFS: supersolid (a paired phase [20]) with hzaii � 0,
hz�1iz2ji � 0, �� � 0, and �� � 0. The point g � 0 and
t � 0:468 features a continuous transition in the O(4)
universality class. The relevant part of the phase diagram
is the region of small g close to this O(4) point, far away

from the bicritical point gbc � 2:0 above which the SFS
phase intervenes between the VBS and 2SF phases. The
corresponding direct VBS-2SF transition has been pro-
posed to be a deconfined critical line (DCP line) [2,3].

The key idea of the flowgram method [11] is to demon-
strate that the universal large-scale behavior at g! 0 is
identical to that at some finite coupling g � gcoll where the
nature of the transition can be easily revealed. The proce-
dure is as follows: (i) Introduce a definition of the critical
point for finite L consistent with the thermodynamic limit
and insensitive to the order of the transition. In our model,
we used the same definition as in Ref. [11]. Specifically, for
any given g and L, we adjusted t so that the ratio of
statistical weights of configurations with and without
windings was equal to 7.5. (ii) At the transition point,
calculate a quantity R�L; g� that is supposed to be scale-
invariant for a continuous phase transition in question,
vanish in one of the phases, and diverge in the other.
Here we consider R�L; g� � hW2

�i. (iii) Perform a data
collapse for flowgrams of R�L; g�, by rescaling the linear
system size L! C�g�L, where C�g� is a smooth and
monotonically increasing function of the coupling constant
g. In the present case, we have C�g! 0� / g [5].

A collapse of the rescaled flows within an interval g 2
�0; gcoll
 implies that the type of transition within the
interval remains the same and thus can be inferred by
dealing with the g � gcoll point only. Since the g! 0 limit
implies large spatial scales and, therefore, a model-
independent runaway renormalization flow pattern, the
conclusions are universal.

To have a reference comparison, we first simulated a
short-range analog of the NCCP1 model (4) with Vij �
g�ij. The short-range model has a similar phase diagram
but with a second-order phase transition for small g and a
first-order one at large g. Figure 2 clearly shows that the
corresponding flowgram cannot be collapsed on a single

FIG. 1 (color online). Phase diagram of the SU(2)-symmetric
DCP action (1). First-order transitions VBS-2SF are shown as a
solid red line up to the bicritical point gbc � 2:0.
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master curve by rescaling the length (shifting the lines
horizontally in logarithmical scale), and the separatrix at
the tricritical point (TP) at g � 0:95 is clearly visible.

Contrary to the short-range model, we find no such
separatrix for the DCP action. As shown in Fig. 3, the
flows feature a fan of lines diverging with the system size
and with the slope increasing with g without any sign of a
TP separatrix.

One can notice that the NCCP1 flows exhibit a slope
change [see Fig. 3 (also observed in Ref. [17] for the J-Q
model)] that might be interpreted as a sign of the evolution
towards a scale-invariant behavior hW2

�i � const, possibly
achieved at a large enough L. The same feature has been
observed recently in Ref. [16] and caused the authors to

speculate that the NCCP1 model features a line of continu-
ous transitions for g < 1:25 [21]. The crucial test, then, is
to see if the fan of the NCCP1 lines can be collapsed on a
single master curve hW2

�i � F�C�g�L�, where C�g� de-
scribes the length-scale renormalization set by the coupling
constant g. As it turns out, the NCCP1 flows collapse
perfectly [22] in the whole region 0:125 � g < 1:65 below
the bicritical point gbc (see Fig. 4). The rescaling function
C�g� exhibits a linear behavior C�g� / g at small g con-
sistent with the runaway flow in the lowest-order renor-
malization group analysis [5]. This behavior all but rules
out the existence of the TP on the VBS-2SF line.

Though our conclusions directly contradict claims made
in Refs. [14–16], the primary data are in agreement. A data
collapse of the flowgram presented in the lower panel of
Fig. 13 in Ref. [16] shows the same qualitative behavior as
our Fig. 4 [23]. We are also consistent with the conclusion
reached in Ref. [17] that the slope change is an
intermediate-scale phenomenon and the Nèel antiferro-
magnet to VBS transition in the J-Q model violates the
scale invariance hypothesis as observed by the divergent
flow of hW2

�i.
The flow collapse within an interval g 2 �0; gcoll
 does

not yet imply a first-order transition. What appears to be a
diverging behavior in Fig. 3 might be just a reconstruction
of the flow from the O(4) universality (at g � 0) to a novel
DCP universality at strong coupling. To complete the
proof, we have to determine the nature of the transition
for g � gcoll. In this parameter range, the standard tech-
nique of detecting discontinuous transitions by the bimodal
energy distribution becomes feasible. As shown in Fig. 5, a
clear bimodal distribution develops at g � 1:65, which is
below the bicritical point gbc and within the data collapse
interval �0; gcoll
.

〈
〉

FIG. 2 (color online). Flowgrams for the short-range model.
The lower horizontal line features the O(4) universality scaling
behavior, so that for g < gc � 0:95 all flows are attracted to this
line. The upper horizontal line is the tricritical separatrix
(marked as TP). Above it, flows diverge due to the first-order
transition detected by the bimodal distribution of energy.

〈
〉

FIG. 3 (color online). A typical flowgram of the gauge-
invariant superfluid stiffness in the NCCP1 model. The inset
shows a fan of diverging flows for 0:125< g< 1:4.

〈
〉

FIG. 4 (color online). Data collapse for the NCCP1 flows. The
yellow line is a fit representing the master curve. The horizontal
axis is the scale-reduced variable C�g�L, with C�g� �
�exp�bg� � 1
=�exp�bg1� � 1
, b � 2:28� 0:02, and g1 � 1:3.
Error bars are shown for all data points.
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This leaves us with the clear conclusion that the whole
phase transition line for small g features a generic weak
first-order transition identical to the one observed in the
U�1� � U�1� case. Driven by long-range interactions, this
behavior develops on length scales / 1=g! 1 for small g
and thus is universal. It cannot be affected by microscopic
variations of the NCCP1 model suggested in Ref. [16] to
suppress the paired (molecular) phase. With this failure of
the paradigmatic DCP action, the only possibility for the
DCP should be associated with some hypothetical models
featuring a continuous phase transition in the middle of the
first-order line—essentially at finite couplings g.
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FIG. 5 (color online). Evolution towards the bimodal energy
distribution with increasing system size indicative of the first-
order deconfinement transition (g � 1:65).
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