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Signals for Specular Andreev Reflection
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We report a theoretical investigation of the spin-dependent Andreev reflection at the interface of a
graphene-based ferromagnet/superconductor junction. It is found that the ferromagnetic exchange
interaction in the ferromagnet can suppress Andreev retroreflection but enhance the specular Andreev
reflection. There is a transition between the specular Andreev reflection and Andreev retroreflection at
which the shot noise vanishes and the Fano factor has a universal value. The present work provides a new
method of detecting the specular Andreev reflection, which can be experimentally tested within the

present-day technique.
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The conventional Andreev reflection process [1-3] at
the interface between a normal metal (N) and a supercon-
ductor (S) means that an electron in the N impinging on the
N/S interface is converted into a hole with a Cooper pair
transferred into the superconductor. Since the reflected
hole retraces the path of the incident electron, the conven-
tional Andreev reflection is also called retroreflection. Very
recently, Beenakker [4] predicted that a graphene-based N/
S junction can exhibit both Andreev retroreflection and
specular Andreev reflection due to the unique energy band
structures of graphene. From the physical point of view, if
two electrons involved in the Andreev reflection process
come from the same band (conduction band or valence
band), this Andreev reflection is the conventional retrore-
flection. Otherwise, a specular Andreev reflection happens
when the two electrons come from conduction and valence
bands, respectively. A natural question arises: How can the
specular Andreev reflection be experimentally distin-
guished from the conventional retroreflection?

In this Letter, we study the transport properties of a
graphene-based ferromagnet/superconductor (F/S) junc-
tion by using the scattering matrix approach. It is found
that the Andreev retroreflection and specular reflection are
strongly affected by a new energy scale—the exchange
energy m of the ferromagnetic graphene. When the Fermi
level is out of the (—m, m) window, the Andreev reflection
is the conventional Andreev retroreflection, and the zero-
bias conductance is suppressed by the exchange interac-
tion. If the Fermi level lies within the (—m, m) window,
however, the specular Andreev reflection dominates the
conduction, and the zero-bias conductance is enhanced
by the exchange interaction. Further study shows that a
vanishing shot noise point and a universal Fano factor F' =
% ~ (.213, corresponding to the closed channel case,
characterize a transition between the two kinds of Andreev
reflections. The universal Fano factor F = 0.213 is inde-
pendent of the mismatch of the Fermi wavelength between
the F and S regions.

The model that we consider is a graphene-based F/S
junction. In the ferromagnetic graphene region for x <0,
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the ferromagnetic correlation may be either extrinsically or
intrinsically induced [5]. In the mean-field framework, we
use an effective one-electron Hamiltonian with exchange
energy m mimicking the ferromagnetic correlation. In the
region of x = 0, the conventional s-wave superconducting
state is maintained by putting a superconducting electrode
on top of the graphene sheet [6]. The electron and hole
excitations in this graphene-based F/S junction can be
described by the Dirac—Bogoliubov—de Gennes equation
[4,7-9]

A(r) _
Er — U — Ha,_,>‘ﬁu = B

(D

Here ¥, = (Yauor ¥Bao» Yz —Wpas) are the four com-
ponents spinor wave functions, with A and B indicating
two inequivalent sites in the hexagonal lattice of graphene.
The subscript a denotes two valleys of the band structure K
and K’, and o (&) is the spin index. If a = K (K'), we have
a =K' (K), and & is the spin opposite to o. Ep is the
Fermi energy, and the pair potential A(r) which couples the
electron and hole excitations from different valleys is of the
form Ay exp(i¢)O(x), with ¢ the superconducting phase
and O the step function. H,, = —ihvg[o,0, +
sgn(a)o,d,] — om®(—x) is the two-dimensional Dirac
Hamiltonian, with vy the Fermi velocity of quasiparticles
in graphene. o = + (—) stands for spin up (down) and
sgn(a) = +1 (—1) for a = K (K'). m is the exchange
energy, and o, and o, are the Pauli matrices acting on
two sublattices. Equation (1) can describe both graphene-
based ferromagnetic metal with Ay = 0 and graphene-
based superconductor with m = 0. Note that we have set
a single-body potential U(r) = —U,0O(x) in the S region
and have assumed U, + Er > A. This condition is the
requirement of superconductivity, indicating that the Fermi
wavelength in the S is much smaller than the supercon-
ducting coherence length [2]. In the numerical calculations
below, the single-body potential U, always satisfies U, >
A, unless we specify.

H,, — Ep + U(r)
< A*(r)
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Following the method in Refs. [4,7,8], we can readily
solve the Dirac—Bogoliubov—de Gennes equation. The key
point is that we must consider two spin-dependent pro-
cesses due to the splitting of spin bands induced by the
exchange interaction. The wave functions in two regions
can be written as Uy = 5" + riffy + rapt and Uy =
tpé + t't. Here %~ and ¢/~ are the electron and hole
wave functions, respectively, in the F region, and ¢ and
Yt are the wave functions of electronlike and holelike
quasiparticles, respectively, in the S region. At the bound-
ary, the wave functions must satisfy the continuous condi-
tion: Vpl.—o = Wgl,—o. A straightforward calculation
gives the spin-dependent normal reflection coefficient r,,
and the Andreev reflection coefficient r,, as

ia, _
_ Cge'* =D,

_ 2 cosa,, COSY
g _ia” ’
C,e + D,

r = : ,
—la,
Cye + D,

@)

Ao

where C, = cos(y — B) + isinBe ** and D, =
cos(y + B)e i + isinB, with a, = sin”'[hvpq/(E +
Er + om)] as the injection angle of electrons and a/, =
sin"[hvpq/(E — E — ém)] as the Andreev reflection
angle of holes. The parameter B is taken to be
cos I(|E|/A,) for |E| = A, or —icosh™'(|E|/A,) for
|E| > Ay, and y = sin"[hvgq/(Uy + Ep)].

Once obtaining these coefficients, we then calculate the
charge current through the junction by using the well-
known Blonder-Tinkham-Klapwijk formula [10]

Iz%gfj:dED,,(E)f[TX(f_ - f9

+ (=T =T — f)lcosa,da,. 3)

Here the factor 2 comes from the valley degeneracy. 77 =
2 cosal,

cosa,,
normal reflection and Andreev reflection, respectively
[11]. The Fermi distribution functions are defined as f =

1/(ePE + 1) and f7 = f(E ¥ eV). D, (E) = EXEctomlw

Thup
1s the number of transverse modes, with w the width of the

junction. Equation (3) is one of our main results in this
work, which describes the Andreev current and quasipar-
ticle current for the graphene-based F/S junction at the
arbitrary temperature and bias. In what follows, we focus
on the low-temperature case of the bias smaller than the
superconducting energy gap, since we are interested only
in the Andreev reflection process.

Figure 1 shows the zero-bias conductance versus ex-
change interaction m for different E. It is found that the
conductance is suppressed by increasing m for larger Er.
This behavior has been well understood in the conventional
F/S junction. Surprisingly, as Er decreases, the conduc-
tance as a function of m exhibits nonmonotonic behavior.
The conductance decreases from m = 0 to Ep and G = 0
at m = Ep and then goes up. In particular, at Er = 0, the
conductance increases linearly from the beginning. In or-

Ir,|*> and T§ = |ry, are the probabilities of the
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FIG. 1 (color). Zero-bias conductance of the graphene-based
F/S junction as a function of exchange energy m for different
Fermi energies. Here U, = 1000 is taken with A, as the unit of
energy (in reality, all of the results remain unchanged on the
whole provided that U, > 80). The series of curves, from left to
right, are plotted for Er =0, 2, 4, 6, and 10.

der to get more physics, we divide E into two regions
|Er| = m and |Ep| > m in terms of a new energy scale—
exchange energy m. The Andreev reflection processes in
the two regions are shown in Figs. 2(a) and 2(b), respec-
tively. If E lies within the (—m, m) window, an electron
with spin up in the conduction band is reflected as a hole in
the spin-down valence band, and so only the specular
Andreev reflection contributes to the zero-bias conduc-
tance. In contrast, when E is out of the (—m, m) window,
the two electrons participating in the Andreev reflection
process come from the conduction (valence) band, giving
rise to the Andreev retroreflection. It then follows that the
exchange interaction suppresses the conventional Andreev
retroreflection [3] but enhances the specular Andreev re-
flection. This result provides the first criterion for distin-
guishing the specular Andreev reflection from the
conventional Andreev retroreflection.

Apart from the conductance, the shot noise can also
provide useful information not available from the dc cur-
rent alone, since it represents the temporal fluctuation of
charge current out of equilibrium caused by the discrete-
ness of charges. Very recently, several works have paid
attention to the shot noise spectrum of graphene whose
low-energy excitation behaves like the massless Dirac
fermions. Theoretically, Tworzydto et al. [12] first pre-
dicted that the Fano factor reaches a universal maximum
F ~1/3 at zero carrier concentration (the Dirac point).
Later, two experimental groups of Danneau et al. and
DiCarlo et al. [13,14] confirmed the theoretical result in
both ballistic and disordered graphenes. Here we consider
the zero-frequency shot noise for the graphene-based F/S
junction, which is generally defined by [15,16] S =
2 [*% de[1(1) — ()] X [1(0) — {(D)]). In the Andreev re-

047005-2



PRL 101, 047005 (2008)

PHYSICAL REVIEW LETTERS

week ending
25 JULY 2008

A

FIG. 2 (color). (a) Specular Andreev reflection process.
Horizontal arrows indicate the direction of the velocity, and
the dashed lines describe the hole band. (b) Andreev retrore-
flection process.

flection region, it can be written as
eV ” ”
S = 167200(0)[@‘(1 — T{)cosa,da,. (4)
T

Figure 3 shows the shot noise as a function of Ep for
different exchange energies m = 2 and m = 4. First, it is
found that there are two zero points of shot noise at Er = 0
and Ep = m. At Er = 0, all of the channels are open due
to the electron-hole symmetry, and there is nearly perfect
Andreev reflection, regardless of a large Fermi wavelength
mismatch. At Er = m, the Fermi surface locates just at the
Dirac point of the spin-down band, and so all of the
channels are closed. Second, the overall shot noise, which
is a product of the average shot noise and the number of
channels, first increases and then drops to zero for the
specular Andreev reflection (0 < Ep < m) but increases
monotonically with Er for the Andreev retroreflection
(Er > m). This is because the average shot noise of each
channel increases with E, but the number of channels
contributing to the conduction decreases linearly with Ef
increased from O to m and then increases for Ex > m. The
vanishing shot noise at Er = m due to the closed conduc-
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FIG. 3 (color). Shot noise as a function of Fermi energy for
fixed exchange energies m = 2,4. Here we have set the tem-
perature to be zero: eV < A. Inset: The Fano factor as a
function of Fermi energy for different exchange energies m =
2,4, 8, from top to bottom. Other parameters A, and U, are the
same as those in Fig. 1.

tion channel is another criterion of the transition between
the Andreev retroreflection and specular Andreev
reflection.

Finally, we turn our attention to the Fano factor, which
measures the unit of transferred charges. It is defined by
F = S/Sp, where Sp = 2el is called the Poisson noise in
the absence of statistical correlations between currents. At
zero temperature and small bias voltage, the Fano factor
has the simplified form

P > oDy (0) [2T7(1 — TY) cosagda(,‘
> oDy (0) [T] cosa,da,

(&)

The Fano factor variation with E is plotted in the inset in
Fig. 3. Owing to the large transmission coefficient, it is
found that the Fano factor of the graphene-based F/S
junction is always sub-Poissonian. In addition, the Fano
factor increases monotonically with Ep for U, > A,
which suggests that the Fano factor in the specular
Andreev reflection case (Er < m) is always smaller than
that in the Andreev retroreflection case (Er > m). This is
because there is no channel mixing in the present model;
the change of the Fano factor is caused by the variation of
the value distribution of T7. With Ef increased from the
specular Andreev reflection to the Andreev retroreflection
region, the Andreev reflection probability decreases, so
that the integral [T9 cosa,da, in the denominator of
Eq. (5) decreases but [277(1 — T{)cosa,da, in the
numerator increases. This fact can account for the mono-
tonic increase of the Fano factor with Er. Another inter-
esting result is that both the Andreev conductance and shot
noise become zero at Er = m, but the Fano factor still has
a finite value. This Fano factor at Er = m defines the
boundary between the specular Andreev reflection and
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FIG. 4 (color). The Fano factor as a function of the Fermi
energy for different single-body potentials U, = 10, 20, 50, and
100 with m = 4.0.

the Andreev retroreflection and can be obtained from the
following calculation. At Er = m, the Andreev reflection
coefficient is reduced to T¢ = 2cosal /(1 + cosal,). In
this limit, Fano factor F can be analytically calculated by
Eq. (5), yielding a universal value of (187 — 56)/(12 —
37r) = 0.213. Note that the universal Fano factor is inde-
pendent of the single potential U, which acts as the source
of the Fermi wavelength mismatch between the F and S
regions, as shown in Fig. 4. The underlying physics can be
understood by the following argument. When the Fermi
level locates at the Dirac point of the spin-down band, there
is a very large mismatch between the Fermi surface of the
spin-down band in the F and that in the S for any finite U,.
Such a large mismatch in the Fermi surface can be re-
garded as an infinite high barrier at the interface of the F/S
junction, which leads to the same Andreev reflection coef-
ficient and the universal Fano factor. At the usual F/S
interface, the Andreev reflection decreases with enhancing
the interfacial barrier. Owing to the Klein tunneling in the
present graphene-based F/S junction, both the Andreev
retroreflection and the specular Andreev reflection have
no significant dependence on the interfacial barrier. This
point has been confirmed by our numerical calculations.
In conclusion, we have presented a theoretical study of
the Andreev reflection in the graphene-based F/S junction.

It is found that there is a transition between the conven-
tional Andreev retroreflection and the specular Andreev
reflection at Er = m. In this transition point, both zero-
bias conductance G and shot noise S vanish, and the Fano
factor is equal to a universal value of F = (0.213. Both G
and S exhibit different behavior with m for Er > m and
Er <m, respectively, corresponding to the Andreev
retroreflection-dominated and the specular Andreev
reflection-dominated regions. These properties can provide
new clues for the specular Andreev reflection.
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