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Reciprocal relations are derived for transport between two pairs of reservoirs energetically coupled at
mesoscopic contact points through second order in the chemical potential differences. In the derivation
attention is focussed on the average number of particles transported between the reservoirs during each
excursion of the contact point away from, and regression back to, a steady state. All quantities involved
are experimentally accessible in the full counting statistics of the transport processes.
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It has long been recognized [1] that symmetry relations
such as those derived by Onsager [2,3] for irreversible
processes are extremely useful for understanding transport
mediated by small structures (mesoscopic regions) con-
necting several macroscopic reservoirs. Examples include
physical devices such as coupled quantum dots and quan-
tum point contacts [4,5], and also biological systems such
as membrane transporters and ion pumps [6], coupled
enzyme systems [7–9], and even biomolecular motors
[10–12]. Near thermodynamic equilibrium the generalized
transport currents Ji usually depend nearly linearly on the
‘‘thermodynamic forces’’ Xi,

 J1 � L11X1 � L12X2 �O�2�;

J2 � L21X1 � L22X2 �O�2�:
(1)

Onsager showed by very general arguments that the cross
coupling coefficients are equal, L12 � L21. Thus, for small
forces, the magnitude of the flow J1 caused by the force X2

(with X1 � 0) is identical to the magnitude of the flow J2

caused by the force X1 (with X2 � 0) if the magnitude of
X2 in the former case is equal the magnitude of X1 in the
latter case. This reciprocity of the flows and forces does not
hold for larger forces where higher order terms become
important. Further, under some circumstances, L12 �
L21 � 0 by symmetry. It is still possible that the flows
are coupled at higher order [13,14], but no general rela-
tionship describing the cross coupling has been given even
for very small forces.

In this Letter I derive reciprocal relations between coef-
ficient functions for transport through a mesoscopic con-
ductor valid for arbitrary magnitude forces, and use these
relations to derive explicit reciprocal relations between the
constant condactances for transport through second order. I
focus on the fluctuations of the mesoscopic region about its
steady state and on the average number of particles trans-
ferred between the macroscopic reservoirs during each
cyclic excursion away from, and regression back to, the
steady state condition. This quantity is accessible in the full
counting statistics [15] of the processes, and hence the
predictions are open to experimental test.

Consider the system shown in Fig. 1. Particles move
between a left reservoir L1 maintained at chemical poten-
tial �L1

and a right reservoir R1 maintained at chemical
potential �R1

through a mesoscopic region M1 with an
occupancy n1. In a separate channel particles move be-
tween a left reservoir L2 maintained at chemical potential
�L2

and a right reservoir R2 maintained at chemical
potential �R2

through a mesoscopic region M2 with
occupancy number n2. These two transport processes are
coupled by energetic interactions at the contiguous meso-
scopic regions M1 and M2, but there is no mass transfer
between the two channels.

After a sufficient time, the mesoscopic region reaches
steady state occupancy (n1;ss, n2;ss) and the occupancies
fluctuate around the steady state levels n1�t� �
n1;ss � �n1�t� and n2�t� � n2;ss � �n2�t� where h�n1�t�i �
h�n2�t�i � 0 (see Fig. 2). During each excursion away
from, and regression back to, the steady state condition
(n1;ss, n2;ss) an integer number N1 of particles are trans-
ferred between reservoirs L1 and R1, and N2 particles are
transferred between reservoirs L2 and R2. The numbers
N1 and N2 can be calculated by keeping track of whether
each particle entering (right and up arrows) and leaving
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FIG. 1. Setup illustrating transport of particles between reser-
voirs L1 and R1 held at fixed chemical potentials �L1

and
�R1

, respectively, and between resorvoirs L2 and R2 held at
fixed chemical potentials �L2

and �R2
, respectively. The par-

ticles move through mesoscopic regions M1 and M2, the
states of which are given by the discrete occupancies n1 and n2.
Energy coupling but not mass transfer between the two channels
can take place in the mesoscale region.
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(left and down arrows) the mesoscopic region comes from
the left (solid arrow) or right (dotted arrow) reservoir. By
inverting the direction of each arrow in any trajectory one
obtains the microscopic reverse of that trajectory. In this
microscopic reverse trajectory the signs (but not magni-
tude) of both N1 and N2 are changed. The ratio of the
probabilities for any such forward and microscopic reverse
trajectories depends only on the changes brought about in
the environment—i.e., on N1, N2, and on the chemical
potential differences between the left and right macro-
scopic reservoirs ��1 � �L1

��R1
, and ��2 � �L2

�

�R2
. Thus, in units where the thermal energy kBT � 1

with T the temperature of all baths, the ratio of the total
probability for a trajectory that results in transport of N1

and N2 particles to the probability for a trajectory that
results in transport of �N1 and �N2 particles is

 

P�N1; N2�

P��N1;�N2�
� eN1��1�N2��2 : (2)

Equation (2) follows from microscopic reversibility. Note
that the ratio P�N1; N2�=P��N1; N2� is not thermodynami-
cally constrained since a trajectory in which �N1 and N2

particles are transported is not the microscopic reverse of
any trajectory in whichN1 andN2 particles are transported.

Indeed, the ratios P��N1; N2�=P�N1; N2� are the key quan-
titative descriptors of coupling between the transport pro-
cesses in channels 1 and 2. The focus on completions of
forward and reverse cycles of the occupancy of the meso-
scopic region is reminiscent of the approach developed by
Hill [8,16] for analyzing biological energy transduction in
terms of the cycles of the proteins responsible for these
conversion processes. A very elegant description of de-
tailed balance for full counting statistics for a single trans-
port process, and related symmetries, has been given
recently by Tobiska and Nazarov [17].

The numbers of particles transferred between the left
and right reservoirs in an excursion away from and back to
the steady state, averaged over many excursions, are

 hN�i �
X�1

N1��1

X�1

N2��1

N�P�N1; N2�; � � 1; 2: (3)

Using Eq. (2) the averages in Eq. (3) can be rewritten,
 

hN�i�
X�1

N��1

N�P�N�;0��1�e
�N�����

�
X�1

N1�1

X�1

N2�1

N��P�N1;N2��1�e�N1��1�N2��2�

	P��N1;N2��1�e�N1��1�N2��2�
; ��1;2;

(4)

where I used P��N1; N2� � P�N1;�N2�e�N1��1�N2��2 in
the expression for hN1i and, hence, take ‘‘ �’’ for � � 1
and ‘‘ �’’ for � � 2 in the symbol 	 in the second line of
Eq. (4). Expanding Eq. (4) in powers of ��1 and ��2 I
write

 hN�i �
X1

i�0

1

i!
G���i ��i

� �
X1

i�0

X1

j�1

1

i!j!
G���i;j ��i

���j
not�

(5)

where ‘‘ not�’’ indicates 2 if � � 1 and 1 if � � 2. The
first sum,

P
1
i�0

1
i!G

���
i ��i

� � hN�;di, includes the direct
terms—those that depend on ��� only. The ‘‘direct
term’’ is zero when the direct force is zero, i.e., when
hN�;di � 0 for ��� � 0. The second sum,
P
1
i�0

P
1
j�1

1
i!j!G

���
i;j ��i

���j
not� � hN�;ci, includes the

cross terms on which I focus in this Letter. In the expres-
sionG���i;j the superscript ��� indicates that the term appears
in the equation for hN�i, and the subscripts indicate that the
coefficient multiplies ��i

���j
not� in the expansion in

powers of ��1 and ��2. The coefficients are
 

G���i;j �
X�1

N1�0

X�1

N2�0

Ni�1
� Nj

not����1�j�i�1P�N1; N2�

� �1� �Nnot�
�P��N1; N2�
: (6)
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FIG. 2. Illustration of a trajectory away from, and regression
back to, the steady state occupancy of the mesoscopic regions
M1 and M2 shown in Fig. 1. I use solid arrows to indicate
particles moving from or to the left reservoirs, and dotted arrows
to indicate particles moving from or to the right reservoirs.
Counting the arrows allows determination of the number of
particles, N1 and N2 transferred between the macroscopic
reservoirs in the excursion.
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For the symbol � in the second term when � � 1 I take
‘‘�’’ when j � even and ‘‘�’’ when j � odd, and when
� � 2 I take ‘‘�’’ when i � odd and ‘‘�’’ when i � even.
The reciprocal relations are manifest

 G�1�m;m�1 � G�2�m;m�1 for m � 0 (7)

and

 G�1�m;m � G�2�m�1;m�1; G�1�m�1;m�1 � G�2�m;m for m> 0:

(8)

Equations (7) and (8) are exact relations that follow de-
ductively from Eq. (2). Similar symmetry relations derived
from an entirely different perspective have been given by
Saito and Utsumi [18]. Equations (7) and (8) include the
‘‘linear’’ reciprocal relation G�1�0;1 � G�2�0;1 that quantifies the
first order effect of ��2 on hN1i to the effect of ��1 on
hN2i, and also quadratic reciprocal relations G�1�1;1 � G�2�0;2

and G�1�0;2 � G�2�1;1 coupling the joint (bilinear) effect of
��1��2 on hN1i to the ‘‘quadratic’’ effect of ��2

1 on
hN2i and vice versa. These low order terms (m< 2) are
likely to be the terms of greatest experimental significance.
Nevertheless, the reciprocal relations for higher order
terms (m � 2) are also valid. The reciprocal relations
Eqs. (7) and (8) quantify the symmetry of the interactions
between the particles in the two channels and how this
leads to interference between the two transport processes.

The conductances G���i;j are functions of ��1 and ��2.
This makes it difficult to use these reciprocal relations for
interpreting experiments since it is impossible to separate
the ��1 and ��2 dependencies coming from the G���i;j
from the dependencies arising from the exponential
weighting factors in Eq. (3). However, one can expand
the G���i;j themselves in powers of ��1 and ��2,

 G���i;j �
X1

k�0

X1

l�0

g���i;j;k;l��
k
���l

not�; � � 1; 2: (9)

The gi;j;k;l are constant (��1 and ��2 independent) co-

efficients. From Eq. (7) g�1�m;m�1;k;l � g�2�m;m�1;k;l and from

Eqs. (8) g�1�m;m;k;l � g�2�m�1;m�1;k;l and g�1�m�1;m�1;k;l � g�2�m;m;k;l

for all k, l � 0. By inserting the expansion for the Gi;j into
Eq. (5) one finds to second order

 hN1;ci � L��2 � �C�M���1��2 � �Q�M
���2
2;

hN2;ci � L��1 � �C�M
���1��2 � �Q�M���2
1:

(10)

The coefficients denoted by capital letters L (linear), C
(cross), and Q (quadratic) are ��1 and ��2 independent
coefficients that come from relation Eq. (7), L � g�1�0;1;0;0 �

g�2�0;1;0;0, C � g�1�0;1;1;0 � g�2�0;1;1;0, Q � g�1�0;1;0;1 � g�2�0;1;0;1. The
new reciprocal relations [from Eq. (8)] are

 g�1�1;1;0;0 � g�2�0;2;0;0 � M; g�2�1;1;0;0 � g�1�0;2;0;0 � M
 (11)

where M and M
 are also ��1 and ��2 independent
coefficients.

The reciprocal relations alone, of course, do not assure
coupling. If both wells are symmetric all coupling coeffi-
cients will be zero. If symmetry is broken in both wells,
and the wells are close enough together that coupling is
experimentally measurable, Eq. (10) can be used to experi-
mentally determine the coefficients in a straightforward
way. The hN�;di can be determined by measuring both hN�i
with ��not� � 0, and L and �Q�M
� and �Q�M� can
be determined by measuring both hN�i with ��� � 0.
Finally, �C�M� and �C�M
� can be determined by
measuring both hN�i with both ��not� � 0 and ��� �

0. A third intriguing possibility is that only one well has
broken symmetry as shown in Fig. 3, where the well
corresponding to M1 is drawn as an asymmetric sawtooth
but the well corresponding to M2 has left or right reflec-
tion symmetry. Coupling of transport through M1 to trans-
port through M2 can occur by a well-known ‘‘flashing
ratchet’’ mechanism [19] where the increase and decrease
�n2�t� of the particle number in M2 raises and lowers the
energy levels in M1. When ��2 � 0 the resulting non-
equilibrium fluctuation of the energy levels, in conjunction
with the asymmetry of the well, leads to transport from left
to right through M1 even when ��1 is zero or slightly
negative. Such asymmetric potential wells are common,
e.g., in conical nanopores that are known to rectify current
[20], and for which there is evidence of coupled transport
[21]. In the coupled wells in Fig. 3 M2 is symmetric and,
hence, with ��2 � 0, hN2i � 0 irrespective of ��1, i.e.,
G�2�0;m � 0 for all m and, hence, L � C � Q � M � 0.
Then, one has

 hN1;ci � M
��2
2 �O�3�;

hN2;ci � M
��1��2 �O�3�:
(12)

A simple heuristic model illustrating nonlinear coupling
that shows this pattern has been previously described [22].
The arguments here demonstrate that the reciprocity be-
tween the coefficient of the term quadratic in ��2

sym for

µ
1

µ
1

µ
2

µ
2

FIG. 3. If at least one of the mesoscopic regions is asymmetric
one expects coupling by the Curie principle. Here the well
corresponding to M1 is modeled as an asymmetric sawtooth,
and transport from L1 to R1 will be driven by a flashing ratchet
mechanism using energy released by downhill transport of
particles between L2 and R2 with ��2 � 0.
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hNasymi and the coefficient of the bilinear term
��sym��asym for hNsymi in the case where one well is
symmetric (sym) and the other asymmetric (asym) is
general.

In the Coulomb blockade regime no more than one
charge can reside in each mesoscopic region at a time so
the number of particles transported between the two reser-
voirs in one cycle of excursion away from and return to the
steady state can only take on the values N1 � �1, 0, or�1
and N2 � �1, 0, or �1. Then the sum in Eq. (4) can be
truncated at N1 � 1 and N2 � 1 and all coefficients can be
expressed in terms of only two functions, the sum A �
P�1; 1� � P��1; 1� and difference B � P�1; 1� � P��1; 1�
of the coupled stepping probabilities, giving rise to the
closed form expressions for the coupled transport,

 hN1;ci � B� e��2�B cosh���1� � A sinh���1�
;

hN2;ci � A� e��2�A cosh���1� � B sinh���1�
;
(13)

where all dependence of the transport on the structure of
the mesoscopic region, and on kinetic aspects (e.g., relative
heights of barriers and whether the transport occurs by
ballistic or diffusive mechanisms) is contained in the two
functions A and B.

The symmetry relations Eqs. (7), (8), (10), and (13)
derived here pertain to a wide variety of coupled transport
processes that can be described in terms of discrete events,
including coupled chemical reactions, and biological trans-
port processes such as active transport [6], coupled trans-
port across membranes [9], and molecular motors [10–12],
where the protein that mediates the transport is the fluctu-
ating mesoscopic region. The protein can be viewed as a
‘‘conduit’’ for energy to flow between two macroscopic
sources (e.g., the free energy difference of fuel and prod-
uct, and the viscous bath and any external applied force in
the case of a molecular motor), but is itself in mechanical
equilibrium at every instant [12].

Onsager, in deriving the reciprocal relations [2] for
which he won the Nobel prize in 1968, was limited by
the experimental capabilities of his day, where it was
generally only possible to measure currents and voltages
or other similar quantities—thermodynamic flows and
forces. Now that experiments measuring discrete pro-
cesses—transfer of individual charges [15], single steps
along a polymer lattice [23], and single chemical conver-
sions between a substrate and product pair by an enzyme
[24]—are routinely accomplished we can focus on the
differences and ratios between the numbers of these ele-

mentary events in any time interval to see that the deep
symmetry relations uncovered by Onsager well over half a
century ago are applicable beyond the near to thermody-
namic equilibrium regime.

I thank Charles Smith and Jim McClymer for very useful
discussions, and Leo Kadanoff, Tom Witten, Kostantine
Turitsyn, Stuart Rice, and John Ross for their valuable
comments.
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