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Anisotropic Spin Relaxation in Graphene
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Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal
geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene
layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the
graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align
to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin
signals at B = 0 and B = 2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the
graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different
strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of
the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation.
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The discovery of the anomalous quantum Hall effect in
graphene [1,2] triggered an avalanche of theoretical and
experimental work on this new system. Spintronics is one
of the fields which has great expectations for this material.
Spin qubits [3] and many other spintronic devices based on
graphene could become available due to the fact that in
intrinsic graphene spins are expected to relax very slowly
[4-7]. The reason behind this is the low hyperfine interac-
tion of the spins with the carbon nuclei (only 1% of the
nuclei are '*C and have spin) and the weak spin-orbit (SO)
interaction due to the low atomic number.

Recent experiments show spin transport in graphene up
to room temperature [§—13], with spin relaxation lengths of
2 pm and relaxation times around 150 ps [8]. Such rela-
tively short relaxation times suggest an important role of
SO interaction. There are two relevant mechanisms for SO
interaction in graphene [14]. In the Elliott-Yafet (EY)
mechanism, spin scattering is induced by electron (mo-
mentum) scattering from impurities, boundaries and pho-
nons. The Dyakonov-Perel (DP) mechanism results from
SO terms in the Hamiltonian of the clean material. Here
electrons feel an effective magnetic field, which changes in
direction every time the electron scatters to a different
momentum state, resulting in random spin precession. In
principle the two mechanisms can be distinguished by their
different dependence on the momentum scattering time 7
[14]. In our experiments in graphene we are not able to
change 7 considerably, making the distinction between
both mechanisms difficult. However, we can obtain valu-
able information about the SO interaction by investigating
the anisotropy of spin relaxation. First we note that the
transverse (7,) and longitudinal (7) spin relaxation times
are expected to be the same for the parameters of our
system [14]. Therefore, as in metals, a single spin relaxa-
tion time T = T, = T, can be used. However, due to the
two-dimensionality, 7T can have a different value for in-
jected spins parallel (7)) or perpendicular (T'}) to the
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graphene plane. For example, if the SO interaction is of
the Rashba or Dresselhaus type then the SO effective fields
are exclusively in the graphene plane and calculations
show that this should result in anisotropic spin relaxation
in which T| = %T” [14]. On the other hand, if the SO
effective fields pointing out of the graphene plane domi-
nate, we expect T > T.

Our experiments are performed using the four terminal
“nonlocal” technique [Fig. 1(a)]. Here the charge current
path can be fully separated from the voltage detection
circuit [15]. The nonlocal technique is less sensitive to
device resistance fluctuations and magnetoresistances
(such as Hall effects), as compared to the standard two-
terminal spin valve technique. This allows the detection of
small spin signals, in our case as small as a few m{)
[Fig. 2(a)]. Fabrication of the devices is done as in
Ref. [8]. Using the “Scotch tape” technique [16] graphene
layers were deposited on an oxidized (500 nm) heavily
doped Si wafer. Calibrations by Raman spectroscopy in
combination with optical microscopy and atomic force
microscopy show that our samples are single graphene
layers. We evaporate a thin layer of aluminum (6 A) on
top of the graphene layer at 77 K and let it oxidize using
pure O,, to form an Al,O; barrier. These barriers very
likely contain pinholes [8], nevertheless spin injection
efficiencies of 10% have been observed. Conventional
electron beam lithography and e-beam evaporation of
50 nm of Co (at 10~° mbar) are used to define the ferro-
magnetic cobalt electrodes. The electrodes have different
widths to assure different switching fields [15]. The experi-
ments are performed at a temperature of 4.2 K and we use
magnetic fields up to 4.5 T. A standard ac lock-in technique
is used with currents in the range 1-20 uA.

Spin precession measurements are performed on two
samples (graphene width W = 1.2 um) for electrode spac-
ings L =5 um (sample A), 0.5, 2, and 4 pwm (sample B).
To perform the Hanle spin precession experiments we first
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FIG. 1. Spin transport in graphene. (a) A SEM picture of a
single layer of graphene contacted by 6 cobalt electrodes
(sample A). Spins traveling a distance of 5 um, from cobalt
electrode F2 to F3, are probed using the nonlocal geometry.
The voltage circuit (F3-graphene- F6) is completely separated
from the current circuit (F1-graphene- F2). (b) Hanle type spin
precession experiment, the magnetization of the spin injector F2
is set antiparallel to the magnetization of spin detector F3. Spins
are injected parallel to the graphene plane. (c) Application of a
strong external magnetic field (~1.4 T) perpendicular to the
graphene layer results in injector and detector magnetizations
aligned parallel to the external magnetic field. Spins are injected
perpendicular to the graphene plane. (d) Hanle spin precession in
case of parallel (11, black curve) and antiparallel (1|, gray
curve) magnetizations.

apply a magnetic field in the y direction to prepare the
magnetizations of the electrodes in a parallel or antiparallel
orientation [Fig. 1(a)]. Then this field is removed and a B
field in the z direction is scanned [Fig. 1(b)] [15]. An
example of the resulting spin precession is depicted in
Fig. 1(d) (sample B), for the parallel and antiparallel
magnetizations of the spin injector and spin detector cobalt
electrodes. The spins are injected parallel to the graphene
plane and are precessing while diffusing towards the spin
detector situated at a distance L = 4 pum from the injector.
At B, ~ 0.2 T the average precession angle is 180 degrees,
resulting in a sign reversal of the spin signal. The magni-
tude of the signal at B, = 0 T (0.2 (2) is small compared to
the signals measured in our previous work, which was in
the order of 2 () for these spacings [8]. This is directly
related to the measured low contact resistances R,
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FIG. 2. Anisotropic spin relaxation at high electron density n
(a) n =2.1X10"> cm~2. Initially, spins are injected parallel to
the graphene plane having the magnetization of the spin injector
set parallel (gray line) or antiparallel (black line) to the detector
(at a distance L = 5 um). From the fits (dashed line) we extract
the diffusion constant D and the relaxation time 7). A magnetic
field of ~1.4 T is needed to align the magnetization of the
cobalt electrodes out of their easy magnetization axis, in this
case the spins are injected perpendicular to the graphene layer
having a spin relaxation time T;. T, is 19% smaller to T),. The
small decrease in the nonlocal signal found between 1.5 and 2 T
is attributed to a background due to orbital magnetoresistance
effects. The same experiment has been performed on sample B
for(b) L=4 um (n=3.5X102cm™2),(c) L =2 um (n=
2.8 X102 cm™2) and (d) L =500 nm (n=3.5X102cm™?).

(1-2 k), which are a factor 5 to 10 smaller than in
Ref. [8]. In this study, the contact resistance R, is equal
or smaller to the typical square resistance of the graphene
layer R, and this results in the reduction of the injection/
detection efficiencies and also provides an extra path for
spin relaxation at the ferromagnetic contacts [17]. This is
taken into account in the fitting of the spin precession
measurements with solutions of the one-dimensional
Bloch equations which describe the combined effect of
diffusion, precession, and spin relaxation in the system:

i fj gup
-2y Bx i)=0, 1
proi (B X ) €))

D

where D is the diffusion constant, w is spin accumulation,
T is the spin relaxation time, g is the g factor (g = 2), B the
magnetic field, # is Planck’s constant and wp the Bohr
magneton. From the fit, the spin relaxation time 7 in
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graphene can be extracted. In our model we assume a spin
injector electrode at position x = 0 and a spin detector
electrode at position x = L. The additional spin relaxation
due to the finite contact resistance R, is taken into account
by a parameter R = WR./R,q, where W is the width of the
graphene layer. If the spin relaxation length is in the um
range then the model shows that for R > 107> m the
contacts do not induce extra spin relaxation. On the other
hand, for R << 107> m the amplitude (A) of the spin signal
has a quadratic dependence on R (A ~ R?) [18].

We start by applying a gate voltage on samples A and B
to allow us to investigate the spin dynamics at a high
electron density n, ~ 3.0 X 10'® m~2 (Fig. 2). From the
fitting procedure both the diffusion constant D and the spin
relaxation time 7) can be obtained. For L =2, 4
(sample B) and 5 um (sample A) we obtain a diffusion
constant of 3 X 1072 m?s™! and spin relaxation times of
T\, = 60 ps for sample A up to 90 ps for sample B, corre-
sponding to spin relaxation lengths A = /DT of 1.4 up to
1.8 um, respectively, comparable to the values found in
Ref. [8]. Increasing the magnitude of B, results in a rota-
tion of the magnetization of the cobalt electrodes out of the
plane, towards the magnetic field direction. This can al-
ready be seen in Fig. 1(d) where the rotation of the mag-
netization induces an asymmetry of the spin signal at 0.5 T.
A magnetic field of 1.4 to 1.8 T is needed to fully align the
magnetization of the cobalt electrodes in the z direction
[Fig. 1(c)] [15,19]. The injected spins are now perpendicu-
lar to the graphene layer and will relax with a time 7’|
which is not necessarily the same as 7). If the anisotropy in
the spin relaxation is large then the amplitude of the non-
local spin signal at B = 0 T should be very different from
the signal at ~1.8 T. In Fig. 2 the decrease in the magni-
tude of the spin signal for L = 2, 4 and 5 pm corresponds
to a spin relaxation time T'; being 20% smaller than 7).
Clearly, our devices show anisotropic spin relaxation in
graphene at high electron densities. Of interest is to inves-
tigate if the same conclusion holds for spins injected in
graphene at the charge neutrality point. For L = 2, 4, and
5 pm, close to the Dirac point, orbital magnetoresistance
effects induce a large background, increasing quadratically
in B,. This background is not only monotonic increasing, it
also contains nonperiodic fluctuations as a function of B,
with an amplitude equal or larger than the spin signal. This
effect, in combination with the large suppression of the
spin signal amplitude at the Dirac point, for L = 2, 4, and
5 wum, does not allow us to investigate in precision the spin
anisotropy. However, we were able to perform the experi-
ment for the L = 0.5 wm spacing in which the spin signal
is relatively large. [Fig. 3(c)] Here, application of a gate
voltage of —76.5 V [Fig. 3(a)] allows us to investigate the
spin dynamics at the Dirac point. Clearly, the nonlocal
resistance at 2T is smaller than the resistance at B, =
0 T showing similar anisotropic spin relaxation behavior
as for high electron densities.

We can now estimate the effective magnetic field which
the electrons feel, assuming the Dyakonov-Perel mecha-
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FIG. 3. Anisotropic spin relaxation at the Dirac point for L =
500 nm (a) Gate voltage dependence of the graphene resistance
between electrodes F, and Fj [Fig. 1(a)]. The charge neutrality
point is found at Vg = —75 V. (b) The nonlocal resistance for
spins injected parallel to the graphene layer (black line). This is
defined as the difference in the signal obtained for injector and
detector magnetizations set parallel (Ryz ) and the signal for
injector and detector set to antiparallel (Ry; 1). Our model (gray
line) which takes into account the finite contact resistance gives a
qualitatively good fit to the data for V, <30 V. (c) Hanle spin
precession at the Dirac point (see Fig. 2 and text).

nism. The electron scatters to a different momentum state
after a time 7 which results in a precession angle of the spin
Aw = w,7. Here, w, is the precession frequency of the
spin. The number of scattering events necessary to induce

an angle of 27 is \/T/7. Using T = 100 ps and 7 ~ 30 fs
we obtain w, ~ 10'2 s~!. Therefore, in the Dyakonov-
Perel mechanism, the precession frequency corresponds
to an effective magnetic field of about 5 T.

We now check if the transverse (7,) and longitudinal
(T,) relaxation times for spins in the graphene plane are the
same. For this, A (=./DT)) is extracted from the spin
signal dependence on L (Fig. 4). Care has to be given to
the strong suppression of the spin signal amplitude as we
approach the Dirac point, found at 4.2 K and as well at
room temperature. Our model takes into account the spin
relaxation at the contacts and fits qualitatively well the data
[Fig. 3(b)]. Earlier work did not show this strong effect due
to the fact that in those samples the contact resistances
were large enough to not to influence the spin dynamics. In
Fig. 4 we present the amplitude of the spin signal of sample
B as function of the electrode spacing L ( = 0.5, 2, and
4 pm) for different values of R. In the same figure we
present the length dependence in the signal expected from
our model. At high electron densities n [Fig. 4(a)] the
model gives a spin relaxation length of 1.5 = 0.2 pum.
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FIG. 4. Dependence of the spin signal as function of electrode
spacing L for spins injected parallel to the graphene plane.
(a) The gate voltage V, is set in such a way that for L = 0.5, 2
and 4 um we have the same value of R =2.2X 10°m (n ~
5.0x 102 cm™2, D =0.04 m?s™!). We obtain a relaxation
length of A = 1.5=*0.2 um which is similar to the length
extracted from the spin precession measurements (see Fig. 2).
Model calculations for A = 0.7 um and A =5 um are shown
for comparison. (b) Moving towards the Dirac point using a gate
voltage in such a way that we decrease the R value to 1.0 X
107°m (n=~2X 102 cm™2, D = 0.03 m?s™!) has a strong in-
fluence in A, as it decreases to 1 wm and (c) to 0.8 um (for
R=55X10"m, n=1.0X102cm 2, D=0.02m?s™!).

This value is comparable to the values found from spin
precession measurements (Fig. 2) performed at similar
values of n (and R), proving that 7 =~ T,. The effect on
A when we approach the Dirac point is stronger: our
model gives A=1 um for n=2.0X 10'>cm ™2 [Fig. 4(b)]
and A =0.8 um for n=1.0X 10" cm™? [Fig. 4(c)].
Interestingly, the diffusion constant D, obtained from con-
ductivity measurements, is a factor 2 smaller close to the
Dirac point [Fig. 4(c)] compared to the value found at high
electron density [Fig. 4(a)]. Since A = /DT, and D =
1/2v%7 (vp: Fermi velocity, 7: electron momentum scat-
tering time) this supports the Elliot-Yafet mechanism,
where T} « 7.

Summarizing, we observe that 7', is almost 20% smaller
than 7 [20]. This anisotropy is expected for a 2D system
where spin-orbit fields in plane dominate the spin relaxa-
tion. However, the large value for the SO fields (5T)
required to describe the result in the Dyakonov-Perel
mechanism, combined with the observed dependence of
the spin relaxation length A on the electron momentum

scattering time 7 suggest that the dominating mechanism is
the Elliott-Yafet mechanism. Note that in principle the EY
mechanism can also give rise to anisotropic spin relaxation
due to the two-dimensional nature of the graphene. As a
next step we suggest investigating the dependence of 7’|
and 7|, on graphene mobility. An increase in mobility by a
factor 10 [21] corresponds to a tenfold increase in 7 which
would unambiguously show the relative importance of the
Elliott- Yafet mechanism compared to the Dyakonov-Perel
mechanism.
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