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We investigate the ground-state properties of a collection of N noninteracting electrons in a macro-
scopic volume � also containing a crystalline array of N spheres of radius rc, each taken as largely im-
penetrable to electrons and with proximity of neighboring excluding regions playing a key physical role.
The sole parameter of this quantum system is the ratio rc=rs, where rs is the Wigner-Seitz radius. Two lat-
tices (fcc and bcc) are selected to illustrate the behavior of the system as a function of rc=rs. As this ratio
increases valence electrons localize in the interstitial regions and the relative bandwidth �F=�0

F is found to
decrease monotonically for both. The system is motivated by the behavior of the alkali metals at signifi-
cant compression. It accounts for band narrowing, leads to electronic densities with interstitially centered
maxima, and can be taken as a model which may be improved upon by perturbation and other methods.
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Wigner and Seitz [1,2] originally accounted for the
major physical properties of sodium by viewing it as an
assembly of ions (nuclei and bound or core electrons) and
itinerant valence electrons assumed statistically separate
from the cores and in a paramagnetic state. At the stabiliz-
ing volume they found that the cores exerted only a weak
perturbation on the valence electrons [leading to the
nearly-free-electron (NFE) approximation] the core then
occupying a relatively small fraction of the unit cell. As a
starting point for the theory of the metallic state under
ordinary conditions, the Wigner and Seitz description has
been very successful over the years. However, high pres-
sure experiments conducted recently are now challenging
this point of view: when the cores are induced to occupy
an increasingly larger fraction of the unit cell the indica-
tions are that a new paradigm, as suggested here, may be
appropriate.

According to system, pressure can reduce linear dimen-
sions by as much as 50% and under these conditions the
alkali metals depart notably from their expected
‘‘simple metal’’ (or NFE) behaviors [3]. Their crystal
structures at room temperature generally proceed from
bcc to fcc, and then to non-close packed (for a concise
exposition of the structures adopted by the alkalis, see [4]
and references therein). The latter are difficult to under-
stand intuitively within the simple NFE and nuclear-
centric viewpoint of Wigner and Seitz. Theoretical work
also indicates a breakdown of the NFE model: Neaton and
Ashcroft [5,6], among others, reported ab initio calcula-
tions for the band structure of lithium and sodium at high
compression. As they showed, the bands are far from NFE-
like and the occupied band-width is much smaller than the
standard value expected for free electrons. They also noted
(as have others [7,8]) that the combined effects of Coulomb
repulsion, Pauli exclusion, and orthogonality can result in
an increase of valence electron density in the interstitial
regions the valence electrons evidently being forced away
from the near core regions characteristic of nuclear-centric
electron distributions.

This behavior is shown to follow from a simple but quite
different physical model which focuses on the increasing
role played by core exclusion and near neighbor core
proximity upon systematic increase of density, at least at
energies typified by Fermi energies. Consider a system of
N valence electrons and N spheres (the ‘‘ions’’) occupying
a common volume �. Though many of the points to be
made are general, the nature of the problem is illustrated
with two simple lattices, here cubic Bravais lattices (bcc
and fcc), with sites fRg, and the cores will ultimately be
taken to rigorously exclude the valence electrons. As in the
formulation of the NFE model, electrons are also initially
taken as noninteracting, though correlation effects will be
of later significance. We consider the thermodynamic limit
N ! 1, �! 1, �=N � 4�r3

sa
3
0=3 and use periodic Von

Kármán boundary conditions on @�. As a starting point,
the ion-electron interaction v is modeled as (in hartrees):

 v�r� � V0��rc � r�; (1)

where r is measured in units of a0, the Bohr radius, � is the
Heaviside function, rca0 is the ionic radius and V0 reflects
how strongly excluding the potential is. The periodic non-
interacting electronic Hamiltonian and corresponding
Schrödinger equation are thus

 ĥ e�r� � �
@

2

2me
r2 �

X

R

v�r�R�; (2)

 ĥ e�r� i�r� � �i i�r� (3)

(a paramagnetic ground state is assumed). As with the NFE
approach Bloch’s theorem fixes the general form of solu-
tion of (3). Using scaled variables
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(4)

the dimensionless form of (2) is
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�V0�rs��� �rc � jx�Xj�: (5)

For fixed �rc, two values of V0 lead to renormalized eigen-
value equations independent of rs; V0 � 0 and V0 ! 1,
the latter case related to the Quantum Lorentz Gas with a
periodic configuration of scatterers [9]. The classical limit
will have links to certain billiards problems.

The two-dimensional equivalent yields interesting in-
sight into the problem ahead. Consider a hexagonal lattice
of discs also taken as largely impenetrable to the electrons,
as may be obtained by selecting a (111) lattice plane either
for bcc or fcc. At the limiting packing fraction in the plane
of�=2

���
3
p

, the circular regions touch, and per unit cell there
remain two involuted triangular regions either of which
must eventually contain a single electron leading to dis-
crete but highly degenerate and eventually polar ground
states. These triangular regions are essentially isolated and
we know the bandwidth must vanish at close packing. As
the radius of the discs approach their close packing value,
the triangular regions are connected by narrow windows
and finite bandwidths must result. The proximity of ex-
cluding discs will tend to heavily suppress the electronic
density at these windows, making it more favorable ener-
getically for the density to accumulate at the center of a
triangular region. The bandwidth is expected to decay
rapidly to zero as the radius of the discs approach their
close packing value. Calculations carried out using the
method described next show that this is exactly so. In three
dimensions, it is not possible to fully isolate an interstitial
volume, even at close packing; however, we expect the
same argument to be valid, i.e., as the length scale asso-
ciated with the windows becomes much smaller than the
length scale associated with the inner region of the inter-
stitial Wigner-Seitz (IWS) cell, the bandwidth should de-
crease rapidly.

The associated eigenvalue problem can be formulated
using a plane wave basis. For reciprocal lattice fKg, k a
point in the first Brillouin Zone (1BZ), and n a band index,
the eigenvalue problem proceeds from

 hrj nki �
1�����
�
p

X

K

ei�K�k��rcn�k�K; (6)

 he�k�K;K0 � hK� kjĥejK0 � ki; (7)

yielding the standard

 �nkcn�k�K �
X

K0
he�k�K;K0cn�k�K0 : (8)

For finite V0, we consider an initial finite plane wave
expansion. Vectors K are included in complete stars having
radii smaller than a cutoffK�. Sums on the 1BZ are carried
out using the special point technique [10,11].

The formal limit V0 ! 1must eventually be considered
as a boundary condition on the electronic orbitals, by
demanding that they vanish on the surfaces of the exclud-
ing spheres. Implementing such a condition completely is

quite complex and we use an approximate alternative: in
the limit of large V0, as is physically clear, the results
become insensitive to its value and thus approximate the
limit V0 ! 1. Convergence can be assessed by computing
the lowest eigenvalue at �, at special points on the surface
of the 1BZ (H, N, P for the bcc lattice, X, W, L, K for the
fcc lattice) and at points k pointing towards these special
points and of magnitude jkj � k0

F (the free electron Fermi
wave vector). The parameters V0 and K� were chosen to
produce reasonable convergence with moderate computa-
tional effort [12].

From the states (6) we determined the electronic density,
centering the Wigner-Seitz cell around an interstitial site
(defining an IWS cell; see Fig. 1). The octahedral and
tetrahedral sites of the fcc lattice have coordinates
( 1

2 , 1
2 , 1

2 ) and ( 1
4 , 1

4 , 1
4 ) and the interstitial site of the bcc

lattice has coordinates (0, 0, 1
2 ). The density has been

computed on a plane of constant z centered on the inter-
stitial sites (Fig. 3), and also along the body diagonal of the
fcc IWS cell, from tetrahedral to octahedral to tetrahedral
site (Fig. 2). It clearly has a localized character and this
provides insight into the different behavior seen for the two
lattices as rc=rs approaches close packing. As spheres take
up increasing space in the fcc lattice, the only paths linking
cavities centered at the octahedral sites of neighboring
IWS cells must go through their shared tetrahedral site.
Figure 2 shows that the boundary conditions efficiently
suppress the density at the tetrahedral site as rc=rs ap-
proaches close packing, thus effectively turning the inner
surface of the fcc IWS cell (i.e., the surface of the Wigner-
Seitz cell outside the spheres) into a surface where density
vanishes. Physically, the electronic orbitals appear tightly
bound to the center of the IWS cell, with vanishing neigh-
bor overlap. The turnover observed in Fig. 4 then reflects a
connection to the physically anticipated nearly free-
electron behavior at lower densities, and is related to the
scale of the windows (which permit overlap of the states of
tight-binding character) dictated by the fcc geometry. The
bcc geometry is different: the windows remain large even
at close packing, electronic localization is not so prominent
and the progession of bandwidth with density is more
gradual, lacking a turnover.

FIG. 1 (color). Interstitial Wigner-Seitz cells. The red surfaces
represent excluding spheres at close packing (one sphere is
removed in the fcc cell for visibility). Indicated in blue is the
plane in which the density for Fig. 3 is computed and the green
cylinder in the fcc cell represents the domain for Fig. 2.
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Bands and bandwidths have been computed in both the
fcc and bcc lattices and representative results can be seen
in Figs. 4 and 5. Relative bandwidths decrease monotoni-
cally from the free electron value at rc=rs � 0 (which we
take to yield the empty-lattice bands) to a finite value in the
bcc case and to low values in the fcc case at close packing
(rc=rs ’ 0:905 for fcc and rc=rs ’ 0:879 for bcc).
Furthermore, it appears that the Fermi surface develops
necks at the N points of the bcc 1BZ, and almost so at L in
the fcc 1BZ [13]. To further substantiate these results, we
also computed the eigenvalues at � and at H for the bcc
lattice using an expansion based on Kubic harmonics [14].
We determined the lowest eigenvalue at � in the � repre-
sentation and the lowest eigenvalues at H in the � and �
representations [15]. The difference between the � eigen-
value at H and the � eigenvalue at � decreases for 0 �
rc=rs � 0:6, suggesting strongly that the relative Fermi
energy must follow suit. The method produced qualita-

tively different results according to the number of basis
functions used at larger ratios, suggesting that this nuclear-
centric method does not converge quickly as the ratio
approaches close packing.

The model simulates core exclusion in the simplest way
and proceeds from weak coupling, NFE-like behavior at
small relative core volume to narrowing relative bandwidth
(and narrowing absolute bandwidth for fcc) at large rela-
tive core volume. The rate at which the bands narrow de-
pends on the connectedness of the IWS cell of the lattice
and is expected therefore to be a general feature. The scale
of the overall excluding region (a measure of rc) relative to
rs is what matters for the appearance of necks in the Fermi
surface. The region of exclusion embodies the physics of
the core states to which the valence states are orthogonal.
These might even include filled d states (as in the noble
metals), which here would be considered confined mainly
to the core region. Not surprisingly for such a filled set the
excluding region is significant in extent and the ratio rc=rs
close to values where Fermi surface necks appear in the
model.

The model reproduces qualitative features and provides
insight into the seemingly strange behavior observed by
others [5,6], such as the narrowing of the bandwidth and
strong modulations of the electronic density leading to
interstitial site maxima. It is thus suggested as a possible
initiating paradigm for the alkalis under high pressure
which may serve as an alternative to the NFE approach.
The ionic cores are not of course rigorously excluding (as
is known from the existence of penetrating states), how-
ever, the features of the model should partially subsist so
long as the average kinetic energy of the valence electrons
does not exceed the excluding core potential. In that sense,
it provides insight into ab initio calculations using valence
one pseudopotentials with repulsive ionic cores. It is un-
likely, however, that the physical system would be well
described by pseudopotentials designed only to reproduce
zero pressure properties when the ionic cores are brought
to the point of close packing.
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FIG. 4 (color). Computed bandwidth normalized to the free
electron Fermi energy as a function of the ratio rc=rs. Inset:
absolute bandwidth, normalized to �c � �0

F�rs � rc�. We ob-
serve that the absolute bandwidth of the fcc lattice has a turnover
around rs ’ 2rc, whereas for the bcc case it does not.
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FIG. 3 (color). Electronic density in the z � 0 plane. The
intersection between the IWS cell and the z � 0 plane is
outlined in red. Note that on the approach to close packing,
the electronic density develops maxima at positions in the IWS
cell that are maximally distant from the neighboring spheres.
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FIG. 2 (color). Electronic density along the main body diago-
nal of the IWS cell of the fcc lattice for various values of the ratio
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It becomes clear that valence electrons can distribute
themselves in a manner quite different from what the NFE
limit would suggest. This can be deduced by invoking the
simplifying features of the Wigner-Seitz approach, but for
the largely confining volumes, themselves initially re-
garded as spheres. As a first approximation these have radii
�rs � rsf1� �rc=rs�

3g1=3 on the surfaces of which the
wave-functions will vanish. The corresponding density is
proportional to fsin��r=a0 �rs�=��r=a0 �rs�g

2 and gives, near
close packing, a quite accurate accounting of the density of
Fig. 2, which follows from wave-functions (6). As the
localization energy cost becomes large, the energetics of
lattice distortions which favor increasing orbital overlap
and reduced band energy may lead to structural phase
transitions.

Notice also that the corresponding charge distributions
will assume even a partially ionic form while preserving an
essential itinerant or metallic character. Reintroduction of
the Coulomb interactions is not expected to significantly
modify the density profile, however the approach will lead
to a quite different viewpoint on the character of the
effective ion-ion interactions. The latter should adopt a
somewhat longer ranged form than may be expected
from linear screening arguments in the NFE limit. This
has obvious implications for collective excitations and also
for ionic dynamics. The behavior of the electronic density
also sheds light on the structural phase transitions which
occur at high pressure: the boundary conditions in the fcc
lattice lead to a depletion of the density at the tetrahedral
sites, thus reducing the effective available volume for the
electrons beyond what is already removed by the impene-
trable spheres: a structural phase transition to a state which
avoids such depleted small enclosures and allows the elec-
tron liquid to reduce its zero-point energy by fully occu-
pying available space thus may become energetically com-
petitive at high pressure. The optical response is also
anticipated to be unlike that of NFE-based systems, though
a Drude edge should be preserved. Because of band nar-
rowing, the density of states at the Fermi level could be
high, and the possibility within a dynamic ionic environ-

ment of electron pairing may be enhanced. Some of these
features, as well as possible emerging structural complex-
ities (also in mixtures) and the role of nominal valence, are
presently under examination.
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