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For materials of varying band gap, we compare energy levels of atomically localized defects calculated
within a semilocal and a hybrid density-functional scheme. Since the latter scheme partially relieves the
band gap problem, our study describes how calculated defect levels shift when the band gap approaches
the experimental value. When suitably aligned, defect levels obtained from total-energy differences
correspond closely, showing average shifts of at most 0.2 eV irrespective of band gap. Systematic
deviations from ideal alignment increase with the extent of the defect wave function. A guideline for
comparing calculated and experimental defect levels is provided.
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Semilocal approximations to density functional theory,
such as the local density approximation (LDA) and the
generalized-gradient approximation, have proved ex-
tremely valuable to investigate energetic, atomistic, and
magnetic properties of defects in solids [1]. However, these
approximations have been much less successful in locating
charge transition levels in the band gap because of the well
known band gap problem from which they suffer. As a
result, a direct comparison between calculated and experi-
mental energy levels remains ambiguous. Furthermore, the
determination of equilibrium densities of intrinsic defects
and charge carriers is hindered [2]. Therefore, considerable
efforts have been deployed in the study of defects to
address the band gap problem going beyond semilocal
approximations to density functional theory. Many-body
perturbation theory in the GW approximation is the
method of choice for calculating defect levels [3], but
remains computationally demanding and therefore limited
to small-size systems. Several practical routes have also
been proposed, such as the scissor-operator scheme, the
marker method [4], the LDA�U method [5], the use of
adapted pseudopotentials [6], and the application of ad hoc
extrapolation schemes [7]. However, the general applica-
bility of these approaches is unclear. More recently, hybrid
density functionals have become increasingly popular for
addressing defect energy levels [8]. These functionals in-
corporate a fraction of Hartree-Fock exchange, leading to
higher accuracy [9] and improved band gaps [10] com-
pared to semilocal functionals.

In this Letter, we carry out a comparative study between
defect energy levels calculated with semilocal and hybrid
density functionals to determine their shifts as the descrip-
tion of the band gap improves. We aim at gaining insight
into how calculated and measured defect levels should be
compared when the adopted theoretical scheme is subject
to the band gap problem. For this purpose, we considered
materials covering a large range of band gaps and selected
defect levels spanning large portions of their band gaps.
Our study shows that charge transition levels obtained with

semilocal and hybrid density functionals correspond
closely, provided a suitable alignment scheme is adopted.
As the band gap decreases, systematic deviations from
ideal alignment are found to increase with the extent of
the defect wave function.

The semilocal density-functional calculations were per-
formed within the generalized gradient approximation pro-
posed by Perdew, Burke, and Ernzerhof (PBE) [11]. We
used a hybrid density functional, denoted PBE0, which is
obtained from the latter by replacing 25% of the PBE
exchange energy by Hartree-Fock exchange [12]. We
used a scheme based on plane-wave basis sets and norm-
conserving pseudopotentials. The pseudopotentials were
generated at the semilocal level and used in all calcula-
tions. The plane-wave basis set was defined by an energy
cutoff of 70 Ry. The Brillouin zones of our supercells were
sampled at the � point, but primitive cells with a converged
k-point sampling were used for the determination of the
bulk band edges. We took care of the integrable divergence
of the Hartree-Fock exchange term [13]. Structural relax-
ations were carried out at the semilocal level [14]. Our
calculations were performed with the codes QUANTUM-

ESPRESSO [15] and CPMD [16].
We considered defects in four different materials of

varying band gap: Si, SiC, HfO2, and SiO2. The band
gaps of these materials calculated at the semilocal level
severely underestimate the experimental values (Table I),
as usual for semilocal density functional schemes. As
shown in Table I, the hybrid scheme systematically gives
larger band gaps, generally leading to a better agreement
with experiment. For silicon, we adopted a cubic simula-

TABLE I. Calculated and experimental band gaps (in eV).

Si SiC HfO2 SiO2

Semilocal 0.6 2.2 4.3 5.8
Hybrid 1.8 3.9 6.7 8.3
Expt. 1.2 3.3 5.9 8.9
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tion cell of 64 atoms and considered the following defects
with their relative charge states: the Si vacancy (�2,�1, 0,
�1, �2), the Si self-interstitial (�1, 0), the substitutional
O (0, �1), the C interstitial (�1, 0, �1), and the
P=Si-vacancy complex (�1, 0, �1). For SiC, we modeled
the 4H polytype using an orthorhombic cell containing 96
atoms. Considered defects include the C vacancy (�2,�1,
0, �1, �2), the Si vacancy (�2, �1, 0, �1, �2), and the
complex consisting of C substitutional to Si next to a C
vacancy (�2, �1, 0, �1, �2). For HfO2, we took the
monoclinic structure and used a supercell containing 96
atoms. We considered the O vacancy (�2, �1, 0, �1, and
�2) and the O interstitial (0, �1, and �2). For SiO2, we
modeled �-quartz with an orthorhombic cell containing 72
atoms and considered the interstitial H (�1, 0,�1), the Si-
Si dimer bond (�1, 0), the puckered O vacancy (�1, 0),
the H bridge -Si-H-Si- (�1, 0,�1), the substitutional N (0,
�1), and the interstitial O2 (0, �1). All defect states
studied are atomically localized.

The formation energy of a defect in its charge state q can
be expressed in terms of the electron chemical potential �
referred to the valence band maximum "v [1]:

 Eqf��� � Eqtot � E
bulk
tot �

X

�

n��� � q��� "v�; (1)

where Eqtot is the total energy of the defect system, Ebulk
tot the

total energy of the unperturbed system, n� the number of
extra atoms of species � needed to create the defect, and
�� the corresponding atomic chemical potential. Charge
transition levels correspond to specific values of the elec-
tron chemical potential for which two charge states have
equal formation energies. We considered both thermody-
namic and vertical charge transition levels.

To compare defect levels in semilocal and hybrid
density-functional schemes, it is necessary to use a com-

mon reference level � external to the electronic system,
i.e., defined on the basis of the nuclear potentials: �� �
�� "v ��. This alignment scheme is illustrated in
Fig. 1. In our formulation, we used the same pseudopoten-
tials in the semilocal and hybrid calculations and trivially
achieved such an alignment by taking� as the cell average
of the local potential originating from the ionic pseudopo-
tentials. However, we note that our formulation does not
imply any loss of generality and that a proper alignment
can also be enforced when different pseudopotentials are
used.

We calculated charge transition levels for the selected
set of defects in Si, SiC, HfO2, and SiO2 within both the
semilocal and hybrid schemes. Charge transition levels
obtained in either scheme were then aligned with respect
to the common reference level� and reported in Fig. 2. For
each material, our results show that the defect levels calcu-
lated in the semilocal and hybrid schemes differ on average
by at most 0.2 eV when aligned in this way, despite the
significantly larger concomitant variations observed for the
band gaps. Since average shifts are similar in the four cases
studied, the identified alignment is more impressive for
large band gap materials where these shifts are small with
respect to the band gap. Indeed, the average relative shift is
only 2% for SiO2, but increases to about 17% for Si. In
particular, these results indicate that differences between
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FIG. 1 (color online). Schematic illustration of the alignment
between energy levels obtained with a semilocal and a hybrid
density functional. The charge transition levels � and �� are
referred to the respective valence band maxima (VBM) and to a
common reference level, respectively. The conduction band
minima (CBM) are also shown.
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FIG. 2 (color online). Comparison between charge transition
levels calculated with the semilocal ( ��semiloc) and hybrid ( ��hyb)
functionals for a variety of defects in Si, SiC, HfO2, and SiO2.
The energy levels corresponding to the valence band maximum
(VBM) and conduction band minimum (CBM) are also shown
(squares). All energies are referred to a common reference level
� (see text), shifted to coincide with the VBM in the hybrid
scheme for convenience. For each material, � is the r.m.s. error
with respect to the ideal alignment (dashed line).
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charge transition levels are already well described at the
semilocal level, lending support to alignment schemes in
which the defect levels are anchored to experimental
marker levels given by well characterized defects [4,17].
In this respect, a key result of our work is that the defect
levels are positioned on an energy scale unaffected by band
gap renormalization.

To reveal systematic deviations with respect to the ideal
alignment, we carried out linear regressions of the avail-
able data deriving optimal slopes [Fig. 3(a)]. Ideal align-
ment corresponds to unitary slope and is best illustrated for
SiO2 (slope of 1.08). When the band gap decreases, the
optimal slope is found to increase indicating that defects in
the upper part of the band gap tend to follow the conduc-
tion band, while defects in the lower part of the band gap
tend to follow the valence band. This tendency is most
pronounced for Si (slope of 1.4).

To provide a rationale for the obtained results, we first
discard effects which affect the defect levels in a minor
way. In all the cases studied, irrespective of band gap, the
electron wave functions were found to be very similar in
the semilocal and hybrid schemes. Their effect on defect
levels can be quantified by calculating total energies at the
hybrid level using electron wave functions optimized in the
semilocal scheme without allowing for electron relaxation
[18]. In this way, we inferred that the differences between
the defect levels calculated in the two schemes do not arise
from variations of the electron wave functions. Since the
observed trends also hold for the subset of vertical tran-
sitions, we discard effects associated to differences in
structural relaxation energies. The Slater transition-state
approximation then allows us to focus on the single defect
eigenstate rather than on the full manifold of occupied
states [19]. This approximation expresses the relevant
total-energy differences by the energy eigenvalue of the de-
fect state at half filling, �� � h DjH j Di ��, and gives
accurate charge transition levels in both schemes [18].

In the Slater approximation, the difference in charge
transition levels can then be expressed as

 �� hyb � ��semiloc � h DjV̂
hyb
x � V̂semiloc

x j Di; (2)

where the exchange potential V̂x is evaluated at half filling.
Two different contributions can conceptually be distin-
guished in Eq. (2) referring to defect-defect and defect-
bulk interactions. The separation is trivial for the Hartree-
Fock exchange term, but requires some prescription for
semilocal exchange. We first focus on defect-defect con-
tributions. Since the defect wave function  D is atomically
localized, differences due to these interactions between
charge transitions levels derived in the two schemes should
be analogous to the corresponding differences for ioniza-
tion potentials and electron affinities of atoms and mole-
cules. The latter quantities can be expressed as total-energy
differences and are already well described in semilocal
approximations [20,21], as demonstrated by extensive
quantum chemistry calculations [9]. Hence, this contribu-
tion is expected to give energy-level differences indepen-
dent of the location of the defect level in the band gap. As
for the defect-bulk contributions, it can be shown that they
vanish in the limit of pointlike defect states. When the
defect wave function has a finite extent, these contributions
depend on the degree of valence-band vs conduction-band
character of the defect state and can lead to a slope larger
than 1 in Fig. 2. To support this picture, we calculated
average spreads of the defect wave functions in each
material. Figure 3(b) clearly shows that the slopes of the
linear regressions increase with these spreads, as the band
gap decreases.

Our results reveal a general trend which appears ame-
nable to generalization. When the theoretical description is
improved, band edges in these materials undergo signifi-
cant shifts but charge transition levels of atomically local-
ized defects remain practically unaffected. This leads us to
propose the following guideline to locate charge transition
levels in the experimental band gap. First, ordinary semi-
local density-functional calculations are performed and
charge transition levels of the targeted defect as well as
band edges are determined. Second, the positions of the
band edges are corrected through the use of a high-level
electronic-structure theory which yields a band gap in
agreement with experiment, e.g., through hybrid density-
functional or GW calculations. This only requires a calcu-
lation for the bulk material, which is computationally less
demanding than a defect calculation. Third, the defect level
is located in the new band structure following the align-
ment proposed in this Letter. We demonstrate the applica-
bility of this scheme for well-characterized defect levels:
the two donor levels of substitutional Te in silicon (TeSi)
[22], the acceptor level of interstitial C in silicon (Ci) [23],
and the optical transition between the valence band and the
E01 defect state in �-quartz [24,25]. The levels are first
determined with respect to the valence band maximum
within the semilocal scheme [26]. The position of the
valence band is then adjusted according to recent GW
calculations [27]. The resulting defect levels agree with
the measured ones within the errors expected from our
analysis (Table II).
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FIG. 3. Optimal slopes derived from linear regressions of the
data in Fig. 2 as a function of (a) experimental band gap and
(b) average spread of the defect wave functions.

PRL 101, 046405 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 JULY 2008

046405-3



This guideline applies to atomically localized defect
states and is clearly inappropriate for effective-mass-like
defect levels which are tied to band edges. Application of
this procedure also requires that the defect is well de-
scribed already within the semilocal density-functional
scheme. For instance, the defect level should fall within
the reduced band gap of the latter scheme to preserve its
localized nature. An inaccurate description may also result
from the occurrence of competition between defect states
featuring different degrees of localization [28].

Our findings relate to other studies of defect levels and
band gaps. Indeed, the band gap can also change as a result
of a physical process, such as quantum confinement. For
quantum dots of varying size, it has been shown that
ionization potentials of deep defects remain constant as
the band gap changes [29]. These potentials correspond to
charge transition levels referred to the vacuum level.
Another way to modify the band gap is achieved by chang-
ing the host material. It has been found that energy levels of
transition-metal impurities within a set of isovalent semi-
conductors are aligned when referred to the vacuum level
[30]. From the perspective of the present Letter, such an
alignment is understood to the extent that the local chem-
istry of the defect is preserved and a common reference
potential can be identified. Such transition-metal markers
can then be used to predict band-offsets at interfaces [31].

In conclusion, calculated energy levels of atomically
localized defects generally remain tied to a suitably defined
reference level as the description of the band gap is im-
proved. This leads to a guideline for comparing calculated
and measured defect levels even when the adopted theo-
retical scheme is subject to the band gap problem.
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Defect q=q0 �semiloc �"GWv �th �expt

Si TeSi 0=� 0.2 �0:4 0.6 0.6
Si TeSi �=�� 0.4 �0:4 0.8 1.0
Si Ci 0=� 0.5 �0:4 0.9 1.0
SiO2 E01 �=0 4.1 �1:9 6.0 6.0
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