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Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of
random charged impurity centers. At low carrier density, we predict and establish that the system exhibits
a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation
universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced
length scale), we predict that there should be a dimensional crossover to the 1D percolation universality
class with observable signatures in the transport gap. In addition, there should be a crossover to the
Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical
density are consistent with this percolation transition scenario.
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One of the remarkable experimental findings of the past
two years, creating a great deal of activity and controversy,
has been the observation that the carrier density dependent
dc conductivity of gated 2D graphene layers, while being
approximately linear in density at high gate voltage, be-
comes a nonuniversal constant over a finite gate voltage
range �Vg around the charge neutral Dirac point. While
this conductivity minimum plateau formation around the
charge neutrality point in 2D graphene is experimentally
well established [1], the actual values of �min �
2e2=h–20e2=h and �Vg � 1–15 V are nonuniversal and
depend on the sample quality [2,3]. The minimum con-
ductivity plateau in graphene has been theoretically ex-
plained [4,5] to arise from the invariable presence of
unintentional random charged impurities at (or near) the
graphene-substrate interface which lead to inhomogeneous
electron-hole puddle formation in the low gate voltage
regime [4–6]. We note that distortions of the graphene
membrane and quenched ripples can also give rise to
density inhomogeneities [7], and there have been recent
theories studying the effect of ripples on graphene con-
ductivity [8]. While we focus here on charged impurity
induced inhomogeneities, many of our conclusions are
only sensitive to the existence of the inhomogeneous den-
sity landscape (i.e., electron-hole ‘‘puddles’’), and these do
not distinguish between mechanisms (e.g., impurities, rip-
ples) producing these puddles. Since graphene is a 2D
semimetal (or more appropriately, a zero-gap 2D chiral
semiconductor with electron-hole bands touching each
other linearly at the charge neutral Dirac point), the con-
ductivity becomes an approximate constant when the gate
voltage induced chemical potential is pinned in this
electron-hole puddle region around the Dirac point. This
inhomogeneous electron-hole puddle based theoretical
understanding of the graphene minimum conductivity
plateau formation leads immediately to an important fun-

damental question: Are there situations where this inho-
mogeneous puddle picture leads to a graphene 2D metal-
insulator transition (2D MIT) as is known [9,10] to occur in
2D semiconductor systems?

We show in this Letter that indeed, as a direct conse-
quence of the inhomogeneous puddle formation in gra-
phene, the system will manifest a 2D MIT, which is
precisely in the same universality class as the correspond-
ing 2D MIT in electron [9] and hole [10] GaAs systems,
provided that there is an energy gap separating the gra-
phene electron and hole bands. The fundamental physics
here is that of percolation—for usual 2D zero-gap gra-
phene, percolation through the puddles is allowed at all
gate voltages, occurring either through the electron puddles
or the hole puddles (or through both [11]), since one or
the other is always percolating. If there is a gap, however,
there should be a percolation-driven 2D MIT in graphene
exactly as found [9,10] in 2D GaAs based semiconductor
structures.

The easiest way to introduce an energy gap in graphene,
which would then immediately lead to a percolation-
induced transport gap (i.e., two separate 2D MIT transi-
tions for electrons and holes), is to consider graphene
nanoribbons instead of bulk 2D graphene. In this Letter,
we predict and confirm experimentally that graphene nano-
ribbons exhibit a 2D MIT in the low carrier density regime
as a function of the applied gate voltage and that this MIT
is in the percolation universality class; furthermore, we
predict theoretically that as ribbons become very narrow,
there should be a dimensional crossover to the 1D univer-
sality, implying that the observed transport gap would tend
to infinity as the ribbon width goes to zero (or in practice,
becomes smaller than the typical size of the puddles),
reflecting the 1D percolation universality where metallic
conduction is completely suppressed. We speculate that
such a 2D-1D crossover may have been observed in recent
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experiments [12,13], but more quantitative work and more
data would be necessary to establish this prediction.

In Fig. 1 we show our experimental data supporting a
percolation-driven metal-insulator transition on a naturally
occurring graphene nanoribbon (that is expected to have
smoother edges than comparable ribbons fabricated using
the method of Ref. [12]) of dimensions L � 1:5 �m and
W � 50 nm. The conductance G � �W=L�� is shown as a
function of applied gate voltage Vg / n. We performed
quantum Hall measurements on the large area connected
to the ribbons to confirm that we have a monolayer of
graphene, and the details of the fabrication can be found in
Ref. [3]. Best fits to Eq. (1) at low density give conductivity
exponents �e � 1:3� 0:2 and �h � 1:3� 0:1 (close to the
theoretically expected value � � 4=3), and the fit to Eq. (2)
at high density gives nimp � 22� 1010 cm�2, which is
consistent with measurements on similarly prepared bulk
graphene samples [3]. Figure 2 shows a similar analysis for
a W � 200 nm sample fabricated at Maryland and two of
the Columbia samples (W � 24 nm and W � 49 nm) re-
ported in Ref. [12]. All three samples show the low-density
percolation universality class with critical exponents � �
1:2� 0:2, 1:3� 0:1, and 1:55� 0:3, respectively, which
are similar to percolation exponents observed in 2D GaAs
systems [9,10]. The corresponding fit parameters for the
three samples are WA=L � 0:008, 0.002, and 0.0087, re-
spectively, and nc � �65:08, 170.87, and 184:23�
1010 cm�2, respectively [the units of A are
	�1010 cm�2��25:8 k�
�1].

For the 2D percolation universality class, at low density
we have

 � � A�n� nc�
�; (1)

where � � 4=3 is the 2D percolation critical exponent. For
graphene ribbons, we expect two such percolation transi-
tions, one for electrons and one for holes, separated by a

‘‘transport gap’’ defined as �g � �
������������������������
��nec � nhc�

p
, where

ne�h�c is the critical density for electrons (holes) and � �
@vF is the graphene Fermi velocity. For larger carrier
densities, where jEFj � �g, we expect a crossover to a
high-density Boltzmann transport regime where [4,5]

 � � 20
e2

h

�
jn� nDj
nimp

�
; (2)

just as for bulk graphene on a SiO2 substrate (where nD is
the charge neutrality point and nimp is the 2D surface
impurity density of Coulomb scatterers). If we define �
as the typical size of the electron or hole puddle, where
below we calculate � self-consistently using the random
phase screening approximation, then so long as the sample
width W * �, we would have 2D percolation whereas if
W & � one has 1D percolation, i.e., a chain of approxi-
mately L=� p-n junctions. Changing nimp (which could be
extracted from high-density mobility measurements)
would also change � and the critical width for which this
dimensional crossover is observed. Moreover, we predict
that signatures of reduced dimensionality should be appar-
ent in temperature dependent transport measurements.
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FIG. 1 (color online). Evidence of percolation-driven metal-
insulator transition in a graphene nanoribbon. Main panel shows
graphene ribbon conductance as a function of gate voltage. Best
fits at low density to Eq. (1) give for electrons A � 1:485, nc �
26:7485� 1010 cm�2, �e � 1:3� 0:2 and for holes A �
1:755, nc � 18:5� 1010 cm�2, �h � 1:3� 0:1. Best fit at
high density to Eq. (2) gives nimp � 22� 1010 cm�2. Inset
shows the same data in a linear scale, where even by eye the
transition from high-density Boltzmann behavior to the low-
density percolation transport is visible.
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FIG. 2 (color online). Percolation-driven metal-insulator tran-
sition in three additional graphene samples. The left-hand panel
shows a naturally occurring graphene nanoribbon with dimen-
sions W � 200 nm and L � 11 �m and has a critical exponent
�h � 1:2� 0:2. The center panel is the W � 24 nm sample
reported in Ref. [12] which has a critical exponent of �h �
1:3� 0:1, and the right-hand panel is the W � 49 nm sample
reported in Ref. [12] which has a critical exponent of �h �
1:6� 0:3.
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To date, most theories for transport in graphene nano-
ribbons consider a quasi-1D, rather than the 2D limit. The
experimental observation of 2D percolation in these rib-
bons casts strong doubt onto the relevance of the quasi-1D
theories for current graphene nanoribbon experiments. As
was already discussed in Ref. [14], many features of the
quasi-1D geometry get washed out for W * 10 nm, which
is the case in most experiments on graphene nanoribbons.
The length scale controlling the crossover from quasi-1D
to 2D behavior in this context may very well be determined
by other independent parameters which are unknown at
this stage, such as the inelastic scattering length or the
phase breaking length (both of which depend on tempera-
ture). Whether the transport properties in graphene nano-
ribbons should be considered using a 2D or a quasi-1D
Hamiltonian is at this stage an open question requiring
further theoretical and experimental study. Our analyses
involving data from two groups, our own and that of the
Columbia group [12], clearly establish that depending on
the value of W either the 2D or 1D percolation universality
class may apply, where we believe this transition to be
controlled by the size of the electron and hole puddles
induced by charged impurities. We cannot rule out the
possibility that further lowering of temperature would
lead to quasi-1D behavior [15] and the percolation-driven
2D MIT is only a crossover phenomenon. Although we
focus on single-layer graphene, we note that a similar
percolation transition should also be seen in graphene
bilayers, where, since an electric field induced gap can
be introduced into the spectrum without any confinement,
the crossover to a quasi-1D regime would not arise. We
note that even for bulk graphene, a Boltzmann to percola-
tion crossover could be induced with a magnetic field,
where for small field and within the electron-hole puddle
model, we expect the p-n resistance to be very low justify-
ing the Boltzmann picture, whereas for large magnetic
field, the p-n junction becomes very resistive [16] inducing
a percolation transition. This crossover may have been
observed in recent experiments [17].

To reinforce the point that the 2D MIT in graphene
nanoribbons is indeed a percolation transition and not a
quantum crossover phenomenon, we calculate the perco-
lation critical density np using the nonlinear screening
argument of Efros [18] with the basic idea being that the
MIT occurs when inhomogeneous density fluctuations cre-
ated by the charged impurities can no longer be screened
by the carriers. This leads to np �

���������nimp
p =d where the

random charged impurities of concentration nimp are as-
sumed to be located at a distance d from the 2D graphene
plane. Taking d� 1 nm and nimp � 2–5� 1011 cm�2,
typical values estimated [2–5] from mobility measure-
ments, we get np � 5� 1012 cm�2. This is in reasonable
agreement with our experimental finding in Figs. 1 and 2.
On the other hand, the quantum localization crossover
density nq can be estimated from the Ioffe-Regel criterion

kF‘� 1, where ‘ is the mean-free path, to be nq � 2�
1010 cm�2 for the same ni and d values. Thus, nq � np,
and our experimental critical density agrees with the per-
colation critical density, providing further support for a
percolation-driven insulating transition in graphene.

Experimentally, one can measure three different gaps. In
addition to the transport gap �g discussed above, the
temperature dependence of the conductivity minimum
gives an activated gap �act (we performed this measure-
ment on the 200 nm ribbon, and found �actW �
0:1 eV nm, which is an order of magnitude smaller than
theoretical estimates [19] of the confinement induced gap),
and finally, Ref. [12] reported the source-drain bias re-
quired to induce conduction and found the gap to be
orientation independent (contrary to the expectation of
the quasi-1D theory that is extremely sensitive to whether
the edge is zigzag or armchair). The connection between
these three experimental gaps and the theoretical gap in the
energy spectrum is beyond the scope of this work, where
we focus here only on the transport gap �g and predict that
in the 2D regime, provided that the impurity location is
pretty much the same, jnec � nhc j /

���������nimp
p

/ ��1=2, where
� is the high-density mobility in the Boltzmann regime
[2–5].

The 2D percolation picture presented above breaks
down when the sample width becomes smaller than the
typical disorder length scale. Using the self-consistent RPA
method of Ref. [5] we can obtain an integral expression for
the potential correlation function hV�r�V�0�i, which for
experimentally relevant parameters can be approximated
by

 hV�r�V�0�i �
K0�2

2��2 exp
�
�r2

2�2

�
: (3)

Using rs � e2=��, where � is the effective dielectric
constant that depends on the choice of substrate, we find
 

K0 �
1

4r2
s

�
D0

C0

�
2
; (4a)

� �
1���������nimp
p

D0

4�r2
s

1

�C0�
3=2
; (4b)

where for z � 4kFd and E1�x� �
R
1
x t
�1e�tdt

 

C0�z���1

4E1�z�

�2
�rs�2



2e�zrs
1
2rs


�1
2zrs�e2zrs�E1	2zrs
�E1	z�1
2rs�
�; (5a)

D0�z��1�
8rszE1	z


�2
�rs�2



8e�zrs
�2
�rs�2

�
2e�zrs
1
2rs

�2zrse2zrs�E1	2zrs
�E1	z�1
2rs�
�: (5b)

This notation is chosen to be consistent with Ref. [5] where
the rms density n� � 2r2

snimpC0�z � 4d
���������
�n�
p

�. For typical
values of nimp � 20� 1010 cm�2 and d � 1 nm, we have
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� � 10 nm, which is consistent with the experimentally
observed critical width W� � 16 nm [12]. In the 1D limit,
there should be no percolation transition, only an activated
conduction, and the effective gap should diverge in the
T ! 0 limit. From Eq. (4), we can predict the dependence
of the puddle size (and therefore the critical width of the
dimensional crossover) on experimentally tunable parame-
ters. For example, we predict that cleaner samples (i.e.,
with a larger high-density mobility) would have larger
critical widths and by doping graphene with potassium
[3], thereby changing only nimp, one could tune through
this dimensional crossover in a sample of fixed width.
Changing the substrate to a high-� material like HfO2

(assuming that nimp and d remain unchanged) could sig-
nificantly increase the puddle size, in contrast to suspended
graphene [20] where increasing rs (which decreases the
puddle size) is compensated by the lower nimp (which tends
to increase the puddle size). In addition, we predict that
suspended nanoribbon experiments will have a smaller
transport gap due to the order of magnitude higher mobil-
ity, but the same critical exponent �, while for nanoribbons
with potassium doping of various strengths, increasing nimp

should lead to a larger transport gap with no change in �.
In conclusion, we have argued theoretically and demon-

strated experimentally that a disorder induced, density
inhomogeneity driven percolation transition is observable
in graphene nanoribbons. We anticipate a crossover to
Boltzmann transport at high carrier density and a dimen-
sional crossover for sample widths that are smaller than the
disorder induced puddle size. Several features of the ex-
periment including the difference between transport and
activation gaps, the large discrepancy between the value of
the gap and that predicted by band structure theory as well
as there being no orientation dependence of the gap and a
critical width below which the dimensional crossover
causes a divergence in the transport gap (for an infinite
1D system in the T ! 0 limit) are all explained naturally in
this picture. This consistent theoretical picture better cap-
tures the physics of nanoribbons than the quasi-1D induced
models that have dominated the literature to date. Our
discovery of a percolation-driven graphene 2D MIT also
shows the close conceptual connection between 2D gra-
phene transport and 2D semiconductor transport, and es-
tablishes that density inhomogeneities dominate carrier
transport in both classes of systems at low enough carrier
densities. In bulk 2D graphene, which is a zero-gap semi-
conductor, this leads to the low-density minimum conduc-
tivity plateau, and in graphene nanoribbons (as well as in
bilayer graphene with an electric field induced gap), where
there is an energy gap between the electron and hole bands,
we get the same percolation-induced 2D MIT familiar
from 2D semiconductor electron [9] and hole [10] systems.
For very narrow graphene nanoribbons, which are in the
1D percolation regime, our theory predicts an insulating

behavior with an effective infinite energy transport gap at
T � 0, which may have been observed experimentally
[12,13], by virtue of the absence of a percolation transition
in 1D. A fundamental question of considerable significance
that remains open in this context is the experimental ab-
sence of quantum localization [21], which may be observ-
able at much lower temperatures than used experimentally
so far.
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