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It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte
solutions as a function of the ionic strength I behaves asymptotically as O��

���
I
p
� for small I and as

O��I� for large I. The former regime is dominated by the electrostatic potential due to an unequal
partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial
thickness. The crossover between the two asymptotic regimes depends sensitively on material parameters
suggesting that the experimentally accessible range of ionic strengths can correspond to either the small or
the large ionic strength regime. In the limiting case of a liquid-gas surface where ion partitioning is absent,
the image charge interaction can dominate the surface tension for small ionic strength I such that an
Onsager-Samaras limiting law O�� I ln�I�� is expected.
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The temporal stability of liquid-liquid emulsions, which
is of enormous importance for applications in, e.g., chemi-
cal, pharmaceutical, food, and cosmetic industries, largely
hinges on the liquid-liquid interfacial tension [1] modified
by surfactants, cosurfactants, and even colloidal particles
[2]. In order to theoretically understand and predict the
liquid-liquid interfacial tension as a function of additives, a
first step is modeling a liquid-liquid interface in the pres-
ence of electrolytes but in the absence of surfactants.
Remarkably, the dependence of the liquid-liquid interfacial
tension on the electrolyte concentration is, in contrast to
the liquid-gas surface tension [3], not well understood.
This is quite astonishing because liquid-liquid interfaces
have been investigated for a long time by means of electro-
capillary measurements [4]. The few reported measure-
ments of the liquid-liquid interfacial tension as a function
of the ionic strength known to the authors, Refs. [5–7],
seem to confirm the linear relation at large ionic strengths
well known from liquid-gas surface tension measurements
[8]. At low ionic strengths the liquid-gas surface tension
exhibits the Jones-Ray effect, i.e., a minimum of the sur-
face tension as a function of the ionic strength [9], whose
analog for liquid-liquid interfacial tensions has been ad-
dressed in the experimental literature, to the authors’
knowledge, only in Ref. [5]. Theoretical approaches to
liquid-gas surfaces are very often based on the assumption
that the gas phase is completely free of ions [3], which
leads to a charge neutral liquid phase. Considering the
image charge interaction as dominating the liquid-gas
surface tension at low ionic strength the Onsager-
Samaras limiting law can be derived [10]. However, as-
suming a nonvanishing ionic strength in the gas phase,
Nichols and Pratt found indications that the liquid-gas
surface tension in some instances can also scale with the
square root of the ionic strength in the low salt limit [11].
By means of an elaborate Ginzburg-Landau-like model for
liquid-liquid interfaces, taking ion densities and solvent
composition explicitly into account, Onuki recently ob-

served such a square root behavior for the liquid-liquid
interfacial tension, too [12]. It is the aim of this Letter to
argue in terms of a minimal model that unequal ion parti-
tioning and charge separation are the key features of liquid-
liquid interfaces of electrolyte solutions at low ionic
strength. Onsager-Samaras-like behavior can be found
only in the absence of unequal ion partitioning and is
therefore unexpected for liquid-liquid interfaces.

In order to define the present model, consider an infinite
system composed of two homogeneous solvents A and B
located within the half-spaces z < 0 and z > 0, respec-
tively, of a Cartesian coordinate system. In the interior of
the solvents the relative dielectric constant "�z� at position
z is given by "�z < 0� � "A and "�z > 0� � "B. In the
following the abbreviation n :�

��������������
"A="B

p
will be useful.

Monovalent ions are distributed in both solvents giving rise
to local equilibrium number densities %��z� at position z
with � � � and � � � denoting cations and anions,
respectively. Deep in the solvent phases local charge neu-
trality holds, i.e., %���1� �: %A and %��1� �: %B. The
partition coefficient is defined by p :�

��������������
%A=%B

p
. In gen-

eral, the solubility of � ions differs in the two solvents.
This effect can be described by solvent-induced potentials
V��z� which take the limiting values V���1� :� 0 and
V��1� :� f� where f� is the solvation free energy differ-
ence of an � ion in solvent B as compared to solvent A.
Verwey and Niessen [13] assumed the steplike form
VVN
� �z� � f���z�, where � denotes the Heaviside func-

tion. Such a model ignores interfacial effects due to an
actually smooth dielectric function ", finite ion size,
van der Waals forces, solvation (structure making and
structure breaking), and image charges [3]. All these ef-
fects depend on material parameters of the system but, with
the exception of the image charge interaction, they do not
depend directly on the ionic strength. Moreover, the image
charge interaction decays as O� exp��2�A;Bjzj�=jzj� with
��1
A;B denoting the Debye screening length in phase A for
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z! �1 and in phase B for z! 1 [3,10,12], whereas the
electrostatic potential is expected to decay much slower as
O� exp���A;Bjzj��. Hence the image charge interaction is
expected to be negligible outside the interfacial region. A
simple account of the mentioned interfacial effects is given
by the shifted Verwey-Niessen potentials V��z� :�
f���z� s� where the discontinuity is located at position
z � s, similar to the interface model by Johansson and
Eriksson [14]. Note that the electrostatic potential is the
only interaction which is not described by the solvent-
induced potentials V� because it is the longest-ranged
ionic-strength-dependent interaction. Moreover, the shift
of the ion densities with respect to the solvent composition
profile in Onuki’s work [12] is compatible with the intro-
duction of external fields similar to the present solvent-
induced potentials V�. The location of the discontinuity of
the solvent-induced potentials with respect to the dielectric
interface at z � 0 is a property of the solvents and the
electrolyte. The analysis will in fact reveal that only chang-
ing the anion type can shift the discontinuity of V� to the
opposite side of the interface. Without restriction s � 0 is
assumed; i.e., solvent B is defined as the one where the
discontinuity of V� is located.

The equilibrium structure represented by the density
profiles %� is most easily calculated in terms of density
functional theory [15]. In units of the thermal energy kBT,
the elementary charge e, and the vacuum Bjerrum length
‘ � e2

4�"vackBT
with the permeability of the vacuum "vac, and

within a mean-field theory ignoring ion-ion correlations,
the density functional of the grand potential per unit sur-
face area

 

��%�	 �
X
���

Z
dz%��z�

�
ln�%��z��� 1��� � V��z�

� �
1

2
��z; �%�	�

�
(1)

is to be minimized with respect to %�. Here �� is the
chemical potential of species � and the electrostatic po-
tential ��z; �%�	� at position z, which is a functional of the
ion density profiles %�, fulfills the Poisson equation

 

d
dz
"�z�

d
dz
��z; �%�	� � �4��%��z� � %��z�� (2)

with the Dirichlet boundary conditions ���1� � 0 and
��1� � �D, where �D :� 1

2 �f� � f�� is the Donnan
potential following from the local charge neutrality in the
bulk liquids. The electrostatic potential � is continuous
and it holds "A�0�0�� � "B�

0�0��, where a prime denotes
a spatial derivative. From the Euler-Lagrange equations
corresponding to Eqs. (1) and (2) one readily derives for
the shifted electrostatic potential  �z� :� ��z� �
�D��z� s� the linearized Poisson-Boltzmann equation

 

d2

dz2
 �z� � ��z�2 �z�; z � 0; s (3)

with the homogeneous Dirichlet boundary conditions
 ��1� � 0 and the piecewise constant Debye screening
factor ��z� defined by ��z�2 :� �2

A :� 8�%A="A for z < 0,
��z�2 :� �2

i :� 8�%A="B for z 2 �0; s�, and ��z�2 :�
�2
B :� 8�%B="B for z > s. Moreover, the partition coeffi-

cient is found as p � exp��f� � f��=4	. The solution of
Eq. (3) is

  �z� �

8>><
>>:
�D
D exp��Az� z < 0
�D
D �cosh��iz� � n sinh��iz�	 z 2 �0; s�
� �D

D exp���B�z� s�	p�n cosh��is� � sinh��is�	 z > s

(4)

with D :� �1� np� cosh��is� � �n� p� sinh��is�. For
the case s � 0 the second line of Eq. (4) is empty.

If the Donnan potential does not vanish, �D � 0, a
difference in solvation free energy leads to an unequal
partitioning of cations and anions on the two half-spaces
occupied by solvents A and B. A measure for this unequal
partitioning is the integrated charge density of the half-
space z < 0

 �A :�
Z 0�

�1
dz
X
�

�%��z� � �
�D"A�A

4�D
: (5)

For �is
 1 the integrated charge density�A is constant to
leading order in �is; i.e., global quantities describing the
ion partitioning within the Verwey-Niessen model (s � 0)
are not influenced by finite interface extensions smaller
than the interfacial Debye length ��1

i . This finding
a posteriori justifies the application of the original

Verwey-Niessen model to calculate droplet charges in
Ref. [16].

The interfacial tension, however, is known to be highly
sensitive to details of the interfacial structure. In terms of
the density functional � [see Eq. (1)], the interfacial
tension in excess of the pure, salt-free liquid-liquid inter-
face is given by �� � ��%�; %�	 ���%ref ; %ref	, where
%ref is the steplike reference ion number density profile.
For the excess interfacial tension with respect to the di-
electric interface at z � 0 the reference density is defined
by %ref�z < 0� :� %A and %ref�z > 0� :� %B which leads to

 �� � 2�1� p2�s%B �
�2
D

������
"B
p

p

2
�������
2�
p

D
�n cosh��is�

� sinh��is�	
������
%B
p

: (6)

As the second term on the right-hand side of Eq. (6) is of
the order O��

������
%B
p
� for both %B ! 0 and %B ! 1, one
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finds the following asymptotic behavior of the excess
interfacial tension:

 �� ’
�
�

�2
D
����
"B
p

2
�����
2�
p np

1�np

������
%B
p

%B ! 0

2�1� p2�s%B %B ! 1:
(7)

As n and p are experimentally accessible, one can use
Eq. (7) to determine�D or s. The crossover, where the low-
density asymptotics �� � O��

������
%B
p
� and the high-density

asymptotics �� � O��%B� are of the same magnitude,
takes place at the ionic strength

 %�B :�
�4
D"Ap

2

32�s2�1� np�2�1� p2�2
: (8)

For %B > %A one finds ���%B 
 %�B �< 0 and ���%B �
%�B �> 0; i.e., the excess interfacial tension vanishes near
the crossover. For %B < %A, on the other hand, ���%B�< 0
for all %B. As the two bulk ion concentrations %A and %B
are proportional to each other within the present model,
one can choose either one calling it the ionic strength I.
Equation (8) leads to a corresponding crossover ionic
strength I�.

Equations (7) and (8) are the main results of the present
work which will be discussed in the following.

The results presented so far have been derived from the
linear Poisson-Boltzmann equation (3) which is expected
to be reliable if j �z�j 
 1, i.e., j�Dj 
 1. However, upon
solving the nonlinear Poisson-Boltzmann equation derived
from Eqs. (1) and (2) numerically, we found the same
asymptotic dependence on the ionic strength I, ���I

~I�� � O��

���
I
p
� and ���I� ~I�� � O��I�, as in Eq. (7)

with a crossover at ~I� � I� where the difference ~I� � I�

increases with j�Dj. Hence the asymptotic scaling of the
interfacial tension difference �� with the ionic strength I
and the existence of a crossover I� are robust qualitative
features of the linear theory when compared to the non-
linear Poisson-Boltzmann theory. Moreover, by numerical
fitting one obtains renormalized parameters �
D and s
 in
Eq. (6) such that �� calculated within nonlinear Poisson-
Boltzmann theory is reproduced even quantitatively.

As the asymptotic behavior of the excess interfacial
tension �� � O��I� for I� I� in Eq. (7) involves the
parameter s, one concludes that the finite size of the
interfacial region is responsible for this asymptotics. This
finding is confirmed by published measurements of liquid-
liquid interfacial tensions [6] and is in fact well known
from liquid-gas surface tensions [3,8]. In contrast, the
behavior �� � O��

���
I
p
� for I
 I� in Eq. (7) can be

attributed to the unequal ion partitioning because the pre-
factor of the asymptotics contains a term of electrostatic
origin which vanishes if �D � 0. The latter regime, which
gives rise to a negative contribution to the interfacial
tension, is in contradiction to the Onsager-Samaras limit-
ing law O�� I ln�I�� [10], which contributes positively
[11]. However, according to the present model, the image
charge interaction is neglected in comparison to the elec-

trostatic potential due to the unequal ion partitioning,
whereas it is the dominating interaction within the
Onsager-Samaras model [10]. Therefore it can be con-
cluded that unequal ion partitioning, which is expected to
be a general phenomenon for liquid-liquid interfaces [12],
leads to �� � O��

���
I
p
� for small I, whereas the absence of

unequal ion partitioning gives rise to �� � O�� I ln�I��
[10]. The situation of a liquid-gas surface with nonvanish-
ing ionic strength in the gas phase investigated by Nichols
and Pratt [11] can be considered as the border line between
both scenarios such that features of both the square root
and the Onsager-Samaras limiting law can be visible.

From Eq. (8) one infers a high sensitivity of the cross-
over ionic strength I� from the low ionic strength regime
��I
 I�� � O��

���
I
p
� to the high ionic strength regime

��I� I�� � O��I� upon the model parameters �D, s,
and p, i.e., upon the material parameters of the system.
This observation is also borne out by the results of Onuki
[12]. Hence, depending on the actual system under inves-
tigation, I� can be larger or smaller than the experimen-
tally available range of ionic strength as will be shown in
the following.

Figure 1 displays the magnitude of the excess interfacial
tension j��j of a water-decaline interface as a function of
the ionic strength I in water for three different salts, KSCN
(triangles), KCl (open circles), and KI (solid squares), as
published in Ref. [5]. The interfacial tension of a salt-free
water-decaline interface is 50:94 mN m�1. The dashed
lines are power laws �I passing through the largest data
points for KSCN and KCl, whereas the solid line is a power
law �I1=2 passing through the smallest data point for KI.
Within the present model one concludes from Fig. 1 that
the crossover ionic strength I� for KSCN and KCl is
smaller than 0.01 M, whereas for KI it is larger than
0.5 M. The prediction ���I
 I��< 0 from Eq. (7) is in

FIG. 1. Magnitude of the excess interfacial tension j��j as a
function of the ionic strength I in water of a water-decaline
interface for the three salts KSCN (4), KCl (�), and KI (�)
according to Ref. [5]. The interfacial tension of a salt-free water-
decaline interface is 50:94 mN m�1. The dashed lines are power
laws �I, whereas the solid line is a power law �I1=2 both
derived from the present model [see Eq. (7)].
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agreement with the data for KI in Ref. [5]. Finally, the
excess interfacial tension measured in Ref. [5] is negative
for KSCN and positive for KCl. Within the present model
this observation is to be interpreted as follows: For the case
of KSCN [���I� I��< 0] one infers p > 1 from
Eq. (7), and consequently in this case solvent A is water
and solvent B is decaline, because the ionic strength in
water is larger than in decaline. Assuming p� 1 Eq. (7)
leads to ���I� I�� ’ �2sI with I � %A which, for
KSCN, yields s � 0:53 nm. Hence the discontinuity of
the solvent-induced potentials V� for KSCN is located at
a distance 0.53 nm on the decaline side of a water-decaline
interface. For KCl [���I� I��> 0], on the other hand,
p < 1 due to Eq. (7); i.e., here solvent A is decaline and
solvent B is water. Assuming p
 1 gives rise to ���I�
I�� ’ 2sI with I � %B which, for KCl, leads to s �
0:23 nm. Thus the discontinuity of V� for KCl is located
at a distance 0.23 nm on the water side of the water-
decaline interface. These findings suggest a weaker affinity
of Cl� for the organic decaline phase than �SCN	�, which
agrees with the structure of these anions. Hence the excess
interfacial tension data in Ref. [5] can be consistently
described in terms of Eq. (7) with respect to the sign and
the power law in the ionic strength. Moreover, s is, as
expected, comparable to the size of the ions. However, a
more detailed experimental check would be highly
appreciated.

To conclude, it has been found within a simple model
that at small ionic strength I the excess liquid-liquid inter-
facial tension of electrolyte solutions behaves as O��

���
I
p
�

due to an unequal partitioning of ions, whereas at large
ionic strength it behaves as O��I� due to a finite interfacial
thickness. These asymptotic regimes are in agreement with
the findings of Nichols and Pratt [11] and Onuki [12]. The
crossover strongly depends on the components of the sys-
tem such that all suggested asymptotic regimes can be
realized experimentally by choosing appropriate liquids
and electrolytes (see Fig. 1 and Ref. [5]). The decrease of
the liquid-liquid tension at low I is expected to be much
more pronounced when highly charged colloids are con-
sidered instead of low-valency ions. Quantitative under-
standing of this increase is of direct relevance for the
stability of Pickering emulsions, as mentioned at the be-
ginning of this Letter. On the basis of the present simple
model for liquid-liquid interfaces between electrolytic so-
lutions, which in this work has proved to agree with
experimental data, it should now be possible to study the
effect of adding surfactants and colloids on the interfacial
tension in order to ultimately obtain a fully microscopic
theory of the (in)stability of emulsions [2,12].
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