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Stochastic Langevin Model for Flow and Transport in Porous Media
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We present a new model for fluid flow and solute transport in porous media, which employs smoothed
particle hydrodynamics to solve a Langevin equation for flow and dispersion in porous media. This allows
for effective separation of the advective and diffusive mixing mechanisms, which is absent in the classical
dispersion theory that lumps both types of mixing into dispersion coefficient. The classical dispersion
theory overestimates both mixing-induced effective reaction rates and the effective fractal dimension of
the mixing fronts associated with miscible fluid Rayleigh-Taylor instabilities. We demonstrate that the
stochastic (Langevin equation) model overcomes these deficiencies.

DOI: 10.1103/PhysRevLett.101.044502

Flow and transport in porous media can be described
on two fundamental scales. On the pore scale, these phe-
nomena are governed by the Navier-Stokes and advection-
diffusion equations. Detailed knowledge of the pore ge-
ometry of most natural and manufactured porous media is
elusive, and solving these equations over a large volume of
a porous medium is often computationally prohibitive.
These and other practical considerations have led to the
development of continuum (or Darcy-scale) models, which
are obtained by averaging the Navier-Stokes and/or
advection-diffusion equations over a sufficiently large vol-
ume of the porous medium.

After a series of simplifying assumptions, the volumetric
or statistical averaging of the pore-scale continuity and
Navier-Stokes equations yields [1] the Darcy-scale con-
tinuity equation
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Here d/dt = 9/9t + u - V denotes the material derivative,
u is the mean microscopic velocity of a fluid with density p
and viscosity u, g is the gravitational acceleration, and p is
the pressure. The friction coefficient y = ¢ u/(pk), po-
rosity ¢, permeability k and hydraulic conductivity ¢g/y
are some of the macroscopic parameters characterizing
porous media on the Darcy scale. While it is common to
simplify (2) further by setting du/dt to 0, which gives rise
to Darcy’s law, we retain this term for completeness.

A similar averaging procedure applied to the pore-scale
advection-diffusion equation gives rise to the Darcy-scale
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advection-dispersion equation (ADE) [1]
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Here C is the solute concentration defined as a mass of
solute per unit mass of a solution, D = D,,/7 + «|u] is the
dispersion coefficient written as a scalar rather than a
tensor to simplify the presentation, D,, is the molecular
diffusion coefficient, and 7 and « are the tortuosity and the
dispersivity of the porous medium.

While adequate in many settings, the classical Darcy-
scale equations (1)—(3) have a number of known concep-
tual and operational drawbacks. For example, (3) implies
that hydrodynamic dispersion is functionally analogous to
Fickian diffusion with a macro-scale effective diffusion
coefficient D that lumps together advective mixing
(spreading due to variations in the fluid velocity) and
diffusive mixing [1]. This contradicts a number of obser-
vations, which indicate that dispersive mixing is funda-
mentally different from its purely diffusive counterpart.
Specifically, the fractal dimensions of the diffusion and
dispersion fronts (isoconcentration contours) are different
[2], and ADE-based models of reactive transport can sig-
nificantly over-predict the extent of reaction in mixing-
induced chemical transformations [3-5].

In heterogeneous porous media, many of the shortcom-
ings of the traditional ADE can be overcome by treating
the hydraulic conductivity or, equivalently, the mean mi-
croscopic velocity u in (3) as random fields and applying
either stochastic averaging (e.g., [6]) or renormalization-
group analyses (e.g., [7]). According to these and other
similar approaches, the randomness is absent if the porous
medium is homogeneous and the drawbacks of the ADE
(3) reemerge.
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In this Letter, we introduce a new stochastic Lagrangian
model for flow and transport in porous media that allows
one to separate advective mixing from its diffusive coun-
terpart. The model posits that fluid flow in homogeneous
porous media is governed by a combination of the con-
tinuity equation (1) and a stochastic Langevin flow equa-
tion which is obtained by adding white noise fluctuations &
to the macroscopic flow equation (2). In this mesoscale
formulation, the noise represents the subgrid variability of
the flow velocity and the combined effects of the simplify-
ing assumptions leading to (2), and accounts for deviations
from the smooth flow paths predicted by the Darcy-scale
continuum flow equations (1) and (2). This is conceptually
analogous to the role played by the noise in Brownian
motion models of diffusion and in fluctuating hydrody-
namics [8].

The resulting stochastic flow and transport equations can
be solved by a variety of methods. Here we solve them with
smoothed particles hydrodynamics (SPH), a Lagrangian
numerical algorithm that has been successfully applied to
both deterministic [9,10] and stochastic [11] transport
problems. In SPH the fluid is represented with M particles,
and the stochastic Langevin flow equation is

dU; VP, dX.
— = ——+g—yU +,KU)l§ — =1,
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where the subscript i (i = 1, ..., M) indicates the random

position X, velocity U, and pressure P of the ith particle.
Reynolds’ decomposition is used to represent a random
quantity A ( = X, U, P) as the sum A = (A) + A of
its ensemble mean (A ) and random fluctuations about the
mean A. The components of the white noise & =
(&), ..., YT satisty (£,(1)) =0 (I =1,...,d, where d is
the system’s dimensionality) and

(&€, (M) = {Fzzza(f —1), Il=m

0, otherwise.

&)

For simplicity, and without any loss of generality, we set
the constants I';; = I" for all /. This is consistent with
taking the dispersivity « to be a scalar. The variance of
the ith particle’s position can be related to the dispersivity
via Einstein’s relationship

lim d<Xl,i(;)t)(1,i(t)>

t—00

= 2a(Uy)*, (6)

where (U;)® is the steady average velocity of the ith
particle. In the stochastic simulations presented here, the
values of the parameter I" was set to 0.046. Figure 1 shows
the variances of the x and y components of the particle
position vector, ()?%(t)}, versus time for the stochastic
simulation with (U;)® = 1 from which a value of 0.02
was obtained for « using Eq. (6). The simulation was
performed in a two-dimensional rectangular periodic do-
main filled with M = 8192 fluid particles. The flow was

<X;>)
N
»

var (X;-
N
S}

0 20 40 60 80 100
time
FIG. 1. Variances (X3(1)) (solid line) and (X3(t)) (broken line)

of the x; and x, components of the particles position vector
X(1), respectively.

driven by gravitational body forces acting on the SPH fluid
particles. Because of the periodic boundary conditions, all
the fluid particles were statistically equivalent, and the
variance of the deviate of the position of any particle i
was the same and could be found from (X?(1)) =
1/M SM(X;; — (X;:))*. The proposed Langevin model of
flow and transport in porous media allows one to elucidate
the relative effects of dispersive and diffusive mixing. This
is because molecular diffusion can be described explicitly
by the classical advection-diffusion equation,

dc
p, =V (pD,VC) ©)

where dC/dt = dC/dt + U - VC, and U is the stochastic
velocity found from Eq. (4). To demonstrate the key ideas
behind our model and to contrast it with the standard
deterministic alternative, we used the two models to simu-
late three transport phenomena: transport of a conservative
tracer, multicomponent reactive transport, and density-
driven unstable miscible flow. For consistency, the solution
of deterministic equations (1)—(3) was also obtained with
SPH.

Transport of a passive scalar.—The first example deals
with transport of a conservative tracer in a two-
dimensional rectangular domain. Figure 2 provides a snap-
shot of a plume migrating through a homogeneous porous
medium, for the Péclet number Pe = [{U)|L/D,, = 1.7 X
10°, L being the size of the domain in the flow direction.
The upper figure was obtained using the standard ADE
model and the lower was obtained using the stochastic
model. The ADE model yields a well mixed plume, while
the stochastic advection-diffusion equation predicted
highly nonuniform transport of solute. Similar nonuniform
mixing has been observed experimentally (e.g., [2]). The
effect of nonuniform mixing is especially important in
coupled processes, such as multicomponent reactions and
Rayleigh-Taylor instability simulated below.

Reactive transport.—In the second example, we con-
sider transport of two solutes A and B undergoing a
homogenous second-order reaction A + B — C in the
aqueous phase. The concentrations A, B, and C of the
compounds A, B, and C evolve according to the
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FIG. 2 (color online). Deterministic and stochastic simulations
of solute diffusion and dispersion.

Lagrangian transport equations
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dt p
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dt p

where I = A, B. Constant concentrations Ay and B, are
prescribed along the upper and lower halves of the left
boundary of the rectangular flow domain, respectively. The
concentration gradients of A, B, and C at the right bound-
ary are set to zero. The flow is driven by a (gravitational)
body force acting from left to right. Periodic boundary
conditions are imposed along the vertical boundaries, and
the horizontal boundaries are treated as impermeable. In
the stochastic model, the advective velocity in equation (8)
is given by (1) and (4) and K = D,,. In the deterministic
model, the advective velocity in (8) is found from (1) and
(2) and K = D. Figure 3 shows the concentration of the
reaction product C/Cy (Cy = Ay = By), computed with
the deterministic and stochastic simulations in which the
fluid was discretized with M = 8192 particles. The deter-
ministic model predicts that the mixing zone widens uni-
formly in the direction of flow, and that the concentration C
varies smoothly in the mixing zone. The stochastic model
yields a nonuniform distribution of C in the mixing zone.

FIG. 3 (color online).
(below) predictions of the concentration
product C.

Deterministic (above) and stochastic

C of the reaction

The latter behavior is more physical, since the large Péclet
number (Pe = 1.7 X 10%), i.e., the small diffusion coeffi-
cient, used in these simulations precludes the complete
mixing of solutes A and B. Figure 4 exhibits the evolution
of the total dimensionless mass of C predicted by the
deterministic and stochastic models. The deterministic
model overestimates the mass and the maximum concen-
tration of reaction product C by an order of magnitude. The
difference in the stochastic solutions, obtained with 8192
and 18432 particles, was less than 2%.

Rayleigh-Taylor instability.—In the final example, we
consider a Rayleigh-Taylor (RT) instability induced by the
miscible displacement of a less dense fluid by a more dense
fluid (e.g., when overlying brine displaces water). We
assume that both the density p and viscosity p of a fluid
vary linearly with the solute concentration, p = py + k”C
and w = uo + k*C, where p, and u, are the fluid’s
density and viscosity in the absence of the solute. The
deterministic model consists of (1)—(3) with a = 0.02,
and the stochastic model is based on (1) and (4) with I =
0.046, and (7). The initial solute concentration was C, in
the upper half of the computational domain and zero in the
lower half of the domain. The flow is driven by the gravi-
tational force acting downward. The simulations were
conducted in a two-dimensional square domain with im-
permeable boundaries. A snapshot of these simulations is
presented in Fig. 5. For both models, the isoconcentration
contours of the fronts separating the denser and lighter
fluids exhibit fractal geometry (Fig. 6). The deterministic
model predicts a smoother front whose effective fractal
dimension is Dy =~ 1.23, while its stochastic counterpart
results in a rougher front with an effective fractal dimen-
sion of D; = 1.32. The fractal dimension was determined
via a box-counting analysis (BCA), with the front defined
as the region where C/C, € [0.4,0.6]. The BCA deter-
mines the fractal dimension from the relationship N(s) ~
(1/s)Ps, where N(s) is the number of boxes of size s,
needed to cover the front [Fig. 6(a)]. Also, the stochastic
model produces a front with a higher density gradient and a
higher propagation rate than the front predicted from the
deterministic model [Fig. 6(b)].
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FIG. 4. Evolution of the total mass of C (normalized with
M, = CoM; where M7y is the total mass of fluid particles in the
computational domain), predicted by the deterministic (dashed
line) and stochastic models with 8192 (solid line) and 18432
(open circles) SPH particles.
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FIG. 5 (color online). Deterministic (left) and stochastic
(right) predictions of the Rayleigh-Taylor density-driven insta-
bility.

Summary.—We presented a new Lagrangian stochastic
model for flow and transport in porous media. The pore-
scale variability of the fluid velocity enters the macro-
scopic (Darcy scale) equations as random noise. The com-
position of the liquid particles does not change as a result
of particle advection, but it does change as a result of
diffusion. The stochastic model obviates the need for a
constitutive relation for the dispersion coefficient by sep-
arating the effects of diffusive and advective mixing on
solute transport, while the classical ADE-based models
assume that fluid particles move with the mean flow ve-
locity (no dispersion of fluid particles), and treat solute
dispersion as a macrodiffusion process. The two ap-
proaches were used to model transport of a conservative
tracer, multicomponent reactive transport, and the
Rayleigh-Taylor instability. For large Péclet numbers,
which are ubiquitous in field-scale transport, the ADE-
based models are known to overestimate solute mixing,
produce artificially smooth concentration profiles, signifi-
cantly overestimate the concentrations of the product of
chemical reactions, and underestimate the effective fractal
dimension and propagation rate of the fronts with the
Rayleigh-Taylor instability. The presented model alleviates
these shortcomings. It is worthwhile emphasizing the fun-
damental differences between the proposed stochastic flow
and transport model and the existing stochastic diffusion or
dispersion models, which use Langevin equations to rep-
resent random walk processes on both pore- and Darcy
scales (e.g., [12].) In our model, random velocities of
adjacent fluid particles are correlated through the continu-
ity equation, while the velocities of random walkers (tracer
particles) are not. Finally, since SPH particles serve as
discretization points for governing partial differential
equations, the proposed approach provides a natural frame-
work for dealing with such transport mechanisms as mo-
lecular diffusion and chemical kinetics, as well as with
coupled flow and transport processes (e.g., variable density
flow).
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FIG. 6. (a) The number of boxes N(s) needed to cover the

concentration isosurface C/Cy, = 0.5 corresponding to the
deterministic (circles) and stochastic models (diamonds) shown
in Fig. 5 as a function of the box size s/L, where L is the size of
the computational domain. The fractal dimension is estimated as
the slope of the linear part of the curves. (b) Position of the front
(tip of the isosurface C/C, = 0.5) as a function of time
predicted by the two models.
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