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We provide an M theory interpretation of the recently discovered N � 8 supersymmetric Chern-
Simons theory with SO�4� gauge symmetry. The theory is argued to describe two membranes moving in
the orbifold R8=Z2. At level k � 1 and k � 2, the classical moduli space M coincides with the infrared
moduli space of SO�4� and SO�5� super Yang-Mills theory, respectively. For higher Chern-Simons level,
the moduli space is a quotient of M. At a generic point in the moduli space, the massive spectrum is
proportional to the area of the triangle formed by the two membranes and the orbifold fixed point.
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Introduction.—The eleven dimensional quantum theory
of gravity, known as M theory, that unifies the various
perturbative string theories was first postulated more than
a decade ago [1,2]. The underlying degrees of freedom of
M theory include membranes, known as M2-branes. The
dynamics of a single M2-brane was first described in [3];
however, the interactions between multiple M2-branes are
still far from understood. These interactions are expected
to involve novel microscopic degrees of freedom and shed
light on the nature of M theory.

At present, the only description of the low-energy dy-
namics of M2-branes is in terms of the strongly coupled
fixed point of a Yang-Mills theory in d � 2� 1 dimen-
sions. The resulting conformal field theory is expected to
be invariant under 16 supersymmetries and an SO�8� R
symmetry. Beyond these symmetries, little is known of the
properties of the fixed point. Progress was made recently in
[4], where a novel, conformally invariant, Lagrangian in
d � 2� 1 dimensions was constructed which exhibits all
the expected symmetries of the problem. The existence of
this Lagrangian has come as a surprise to many, for it flies
in the face of the well-known ‘‘folk-theorem’’ that the only
maximally supersymmetric Lagrangian is super-Yang-
Mills. It is to be hoped that the Lagrangian discovered in
[4] will prove as important as super-Yang-Mills in eluci-
dating various duality symmetries in string theory and
gauge theories, and will pave the way to a better under-
standing of M theory.

Various aspects of the theory were anticipated in [5–7],
and a number of recent papers have explored some of its
properties [8–12]. Yet, so far the interpretation in terms of
M2-branes has remained somewhat murky. The purpose of
this short Letter is to shed some light on this issue through a
study of the classical vacuum moduli space and spectrum
of the theory. We work with the simplest—and, to date,
only—explicit example of the Lagrangian, which is based
on an SO�4� gauge symmetry with an integer valued
coupling constant k. We will show that, at levels k � 1
and k � 2, the classical moduli space M coincides with
the infrared limit of SO�4� and SO�5� super Yang-Mills
theory. This describes two membranes moving in the back-

ground of the orbifold R8=Z2, without and with discrete
torsion, respectively. For k > 2, we find that the vacuum
moduli space is the quotient of M. The group acts on the
moduli space, but does not appear to have a natural action
on the underlying spacetime. We further show that, at a
generic point in the moduli space, the mass of the heavy
states is proportional to the area of the triangle formed by
the two membranes and the fixed point, and we make some
comments on the implications of this mass formula.

The M2-brane Lagrangian.—The Lagrangian presented
in [4] is built around a 3-algebra A. This is a vector space
with basis Ta, a � 1; . . . ; dimA, endowed with a trilinear
antisymmetric product �Ta; Tb; Tc� � fabcd Td. The algebra
is accompanied by an inner product, hab � Tr�TaTb�, with
which indices may be raised and lowered. The structure
constants of the algebra are then required to be totally
antisymmetric, fabcd � f�abcd�, and to satisfy the ‘‘funda-
mental identity’’

 faefg fbcdg � fbefg facdg � fcefg fabdg � fdefg fabcg � 0:

The matter fields consist of 8 algebra-valued scalar fields
XIa, I � 1; . . . ; 8, transforming in the 8v of SO�8�, together
with algebra-valued spinors �a transforming in the 8s of
SO�8�. The theory also includes a nonpropagating gauge
field Aab� . The bosonic dynamics is governed by the
Lagrangian,
 

L � �
1

2
D�XIaD�XIa � V�X� �

1

2
����

�
fabcdAab� @�Acd�

�
2

3
fcda

gfefgbA
ab
� A

cd
� A

ef
�

�
; (1)

where the scalar potential is

 V�X� �
1

12
fabcdfefgdX

IaXJbXKcXIeXJfXKg; (2)

while the covariant derivative is defined by D�X
Ia�

@�XIa�fabcdA
cd
� XIb. The theory is invariant under 16 su-

percharges and the gauge symmetry: �XIa��fabcd�bcXId

and �Aab� � fabcdD��ab. Presently, the only known,
finite-dimensional, representation of a 3-algebra has
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dimA � 4, and the gauge field Aab� is valued in so�4�. The
inner product is taken to be hab � �ab while the structure
constants are [4]

 fabcd �
2�
k
�abcd: (3)

The requirement that the theory is invariant under large
gauge transformations imposes the usual quantization on
the Chern-Simons coefficient: k 2 Z. In the rest of this
Letter, we study a few elementary aspects of this SO�4�
theory.

The classical moduli space.—We start by examining the
vacuum moduli space of the classical theory, defined as
solutions to V�X� � 0 modulo gauge transformations. This
was previously discussed in [8,11]. However, in both
analyses, there was no obvious interpretation of the moduli
space in terms of known M theoretic objects.

By a suitable gauge transformation, solutions to V�X� �
0 may be written as [8]

 XI � rI1T
1 � rI2T

2: (4)

However, as stressed in [11], there are additional gauge
symmetries which preserve the form of XI. Since X trans-
forms in the fundamental representation of SO�4�, we may
act by g 2 SO�4� in the block diagonal form

 g �
g1 0
0 g2

� �
; (5)

where g1, g2 2 O�2� with detg1 � detg2. Let us first look
at a number of discrete symmetries. Since g2 acts trivially
on (4), we can effectively ignore it and simply look at g1 2
O�2;Z�. There are three choices for g1 which generate all
of O�2;Z� and act on r1 and r2 as
 

�1 0

0 1

 !
: r1 ! �r1; r2 ! r2

1 0

0 �1

 !
: r1 ! r1; r2 ! �r2

0 1

1 0

 !
: r1 ! r2; r2 ! r1:

(6)

We have still to divide out by the continuous g1 2
SO�2� � U�1�12 symmetry, which acts as zI ! ei�zI where
zI � rI1 � ir

I
2. If we make use of all three discrete gauge

symmetries (6), we already have the identification zI !
izI. Thus, in order not to overreact, we must take the
parameter � to have range � 2 �0; �=2�. Alternatively,
we could impose just one discrete symmetry, say the last
one which reads z! i�z, and take � 2 �0; ��.

Dividing out by this continuous gauge symmetry would
seem to leave us with a 15-dimensional moduli space. This
is a rather odd state of affairs and would contradict the
expectations of supersymmetry. We will now show that by
considering the unbroken gauge symmetry of the theory,
we will recover this lost dimension of moduli space. To see

this, we proceed by writing down the low-energy effective
action.

Because of the �abcd appearing in the covariant deriva-
tive, the U�1�12 gauge symmetry is associated to the gauge
field A34

� . Normalizing so that zI has charge �1, we define
B� �

4�
k A

34
� . Then, the kinetic terms on moduli space are

given by

 L moduli � �
1

2
jD�zIj2; (7)

with Dz � @z� iBz. At a generic point in moduli space,
there is also an unbroken SO�2� symmetry [11], arising
from the action g2 in (5). We will call this symmetry
U�1�34. It is associated to the gauge field C� �

4�
k A

12
� ,

where the normalization is again taken to ensure that
charged fields have charge 	1 under C�. A mixed
Chern-Simons term couples the B and C gauge fields:

 L cs �
k

2�
����B�@�C�: (8)

It was shown in [9] that integrating out the broken gauge
field B induces a Maxwell term for C, promoting it to a
dynamical field. (In fact, the calculation in [9] was done at
a nongeneric point in moduli space with an unbroken
SU�2� gauge symmetry, but it proceeds in the same manner
at a generic point.) Here, we instead replace the unbroken
gauge field C with its dual photon, introduced in its usual
guise as a Lagrange multiplier to impose the Bianchi
identity on the field strength G�� � @�C� � @�C�.

 L dual � �
1

8�
�����@�G��: (9)

The normalization is chosen such that � 2 �0; 2��. To see
this, note thatU�1�34 
 SU�2�diag 
 SO�4�, with all matter
fields in our theory living in the adjoint of SU�2�diag. The
magnetic configurations of the theory are therefore given
by the familiar Euclidean ’t Hooft-Polyakov monopole
solutions which satisfy the quantization condition,

 

1

8�

Z
d3x����@�G�� 2 Z: (10)

In the presence of the mixed Chern-Simons term (8), the
shift symmetry of the dual photon becomes gauged under
U�1�12. This follows because the topological current �G,
which generates the shift symmetry of the dual photon, is
coupled to B�. It is also simple to see by collecting
together the various pieces of the Lagrangian, which can
be found in (7)–(9): L � Lmoduli �LCS �Ldual. This is
invariant under the gauge action U�1�12

 zI ! ei�zI; �! �� 2k�; B� ! B� � @��

together with the discrete gauge symmetries (6), which
now also induce a sign flip for �.

We can go further and eliminate the field strength G��.
Since it is now unconstrained by the Bianchi identity, it
acts as a Lagrange multiplier imposing the requirement
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that B� � ��1=2k�@�� is pure gauge. This results in the
action

 L � �
1

2

��������@�zI � i
2k
zI@��

��������2
; (11)

and we observe that � can be eliminated by the field
redefinition zI ! e�i�=2kzI. However, this transformation
still leaves us with a number of discrete identifications
which we now examine more carefully.

The theory at level k � 1 and k � 2.—For k � 1, we
impose just one of the discrete symmetries, which we take
to be z! i�z, with � 2 �0; ��. We can now fix the U�1�12

gauge symmetry by imposing � � 0, leaving us with
remnant Z2 which acts by �! �� 2� and z! �z.
The moduli space at level k � 1 is thus,

 M k�1 �
R8 �R8

Z2 � Z2
: (12)

Writing z � r1 � ir2, the two Z2 factors act as �r1; r2� !
��r1;�r2� and �r1; r2� ! �r2; r1�. As observed in [13], this
coincides with the infrared limit of the moduli space of
d � 2� 1 dimensional, maximally supersymmetric Yang-
Mills (SYM) theory with an SO�4� gauge group.

For k � 2, we may again fix the U�1�12 gauge symmetry
by setting � � 0. Imposing all three discrete symmetries,
we have � 2 �0; �=2�which now leaves no further residual
transformation. The moduli space dynamics is simply
given by the 8 complex scalars zI, endowed with a flat
metric and subject to the discrete symmetries (6). We
conclude that the classical vacuum moduli space of the
theory at level k � 2 is

 M k�2 �
�R8=Z2� � �R8=Z2�

Z2
: (13)

This coincides with the moduli space of SO�5� SYM
theory in the infrared limit or, alternatively, the configura-
tion space of two M2-branes in the background of the
orbifold R8=Z2.

We strike a note of caution: the k � 1 and k � 2 theories
are strongly coupled at all points in their moduli space.
Nonetheless, we will assume that we can take (12) and (13)
at face value. We take this as evidence that the k � 1 and
k � 2 theories describe the infrared fixed point of SO�4�
and SO�5� SYM, respectively.

Let us briefly review a few pertinent facts about the M
theory orbifold R8=Z2. There are actually two different
such orbifolds, distinguished by discrete torsion for G4

arising because H4�RP7;Z� � Z2 [14]. The orbifolds
with and without torsion are referred to as type-B and
type-A, respectively. The low-energy dynamics of N M2-
branes in these orbifold backgrounds is thought to be
governed by a maximally supersymmetric, SO�8� invariant
conformal fixed point. These arise as the strong coupling
limit of maximally supersymmetric Yang-Mills (SYM) in
d � 2� 1 dimensions with gauge groups O�2N�,
SO�2N � 1�, and Sp�N�. As explained in [14,15], the

fact that these three classical groups flow to one of only
two possible theories implies nontrivial IR dualities be-
tween distinct UV theories. The RG flows occur as follows:
O�2N� SYM flows to the theory on M2-branes on the
A-type orbifold; SO�2N � 1� SYM flows to the theory on
the B-type orbifold; while Sp�N� SYM flows to either the
theory on the A-type or B-type orbifold, depending on the
expectation value of the dual photon. Comparing to our
previous analysis, we see that the k � 1 theory describes
two membranes on the A-type orbifold, while the k � 2
theory describes two membranes on the B-type orbifold.

The identification of the M2-brane Lagrangian (1) with
M2-branes on an orbifold also resolves a puzzle raised in
[11] regarding chiral primary operators. The bosonic,
gauge invariant operators of (1) live in tensor representa-
tions of SO�8� with an even number of indices. Yet the
chiral primary operators derived fromM theory on AdS4 �
S7 live in the symmetric traceless s-index representations
of SO�8�, with both even and odd s. However, pleasingly
only the even s representations survive the orbifold pro-
jection in supergravity [16]. Although the AdS/CFT analy-
sis is valid only at large N, it is comforting that this basic
feature agrees with the N � 2 M2-brane theory.

The theory at level k > 2.—Perhaps the most intriguing
consequence of the Lagrangian (1) is the existence of a
weakly coupled limit when k 1. Understanding how
such a limit arises from an M theoretic description may
be our best hope of getting a handle on the underlying
microscopic degrees of freedom.

For k > 2, setting � � 0 does not completely fix the
U�1�12 gauge action (10). There exists a residual Zk sym-
metry which leaves � � 0 mod 2� and is generated by
zI ! ei�=kzI. As pointed out in [13], this Zk action does not
commute with the Z2 actions of Eq. (6). Between them,
they generate the dihedral groupD2k. We conclude that the
moduli space is given by

 M k �
R8 �R8

D2k
: (14)

However, while the group D2k has a simple action on the
moduli space, it does not appear to have such a description
on the spacetime transverse to the M2-branes for k > 2. In
particular, it does not leave the distances between branes
fixed. Needless to say, it would be potentially rather inter-
esting to better understand the microscopic meaning of this
quotient action and these higher k theories. A curious
observation of [13] is that the moduli space for k � 3
coincides with the infrared limit of SYM with G2 gauge
group.

The spectrum and non-Abelian gauge restoration.—
Since the Zk action zI ! ei�=kzI does not preserve the
distance between the two branes, it would not make
much sense for a pair of D-branes. In string theory, this
distance dictates the spectrum of massive states arising
from stretched strings. Yet the M2-brane theory appears
to be blind to the transverse distance between the two
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branes. It knows only about transverse areas. This is clear if
we look at the classical mass spectrum, which we trust for
k 1. Sitting at a generic point in moduli space, we may
employ the SO�8� R symmetry to rotate the M2-branes to
lie in the X7 � X8 plane. Then, the mass of states is given
by

 M �
4�
k
A (15)

where A � 1
2 jr

7
1r

8
2 � r

8
1r

7
2j �

1
4 j�z

7z8 � �z8z7j is the area of
the triangle formed by the two M2-branes and the orbifold
fixed point. This is manifestly invariant under the Zk
action.

This mass formula implies that new states become mass-
less when the branes become colinear with the orbifold
fixed point. This is to be contrasted with the familiar
statement that states on D-branes become massless when
branes coincide. In generic vacua, the R symmetry is
broken to SO�6� and, as we noted previously, a U�1�34

gauge symmetry survives. However, when the branes are
colinear, and the R symmetry is broken to SO�7�, a full
SO�3� gauge symmetry is left unbroken. This was the
situation examined in [9] where it was shown that, upon
integrating out the broken gauge generators, this SO�3�
gauge field becomes dynamical. These are the new mass-
less states.

The emergence of this dynamical SO�3� gauge field is
something of a blessing, for it removes a potential diffi-
culty in interpreting the expectation value (4) as the posi-
tion of two branes. The problem is that whenever the
branes are colinear, one can change the relative positions
of the branes through a gauge transformation. For example,
the SO�7� preserving expectation values

 XI � rI�c1T
1 � c2T

2� (16)

are gauge equivalent for all c1 and c2 such that c2
1 � c

2
2 is

constant. Naively, this would equate configurations with
different separations between colinear branes and the fixed
point. In fact, the theory does distinguish between these
configurations, but it is somewhat hard to see explicitly.
The presence of the dynamical, unbroken SO�3� gauge
field means that there is a non-Abelian dual photon, whose
expectation value will determine the relative positions of
the branes. This is entirely analogous to the situation of two
D2-branes in IIA string theory, for which the moduli space
is �R7 � S1�=Z2. Even at the origin of R7, where the gauge
group is unbroken, the branes may still be separated in a
nonsingular fashion along the M theory circle. However,
seeing how this explicitly arises from the non-Abelian dual
photon is difficult.

A related fact is that the appearance of the massless
states when the branes are colinear does not necessarily
imply a singularity in the low-energy effective theory. This
is exemplified in the D2-brane, where there are only iso-
lated singularities in the moduli space, rather than a whole
S1’s worth of singularities at the origin of R7. Indeed, from

the M theory perspective, the generic point with colinear
branes should be smooth. More precisely, we expect that,
in the vacua (16), there is just a single singularity for the
k � 1 theory, corresponding to the two branes sitting on
top of each other. For the k � 2 theory, there should be two
singularities, the first corresponding to the two branes
sitting on top of each other, while the second corresponds
to one brane sitting on the orbifold fixed plane which is
now expected to result in a nontrivial fixed point.

Finally, it is tempting to believe that the mass formula
(15) is hinting at some fundamental degree of freedom of
M theory. The fact that the mass should scale as an area is,
for k 1, a consequence of conformal invariance, and the
triangle is the only natural area in the theory. Nonetheless,
the appearance of such a ‘‘3-pronged’’ object is intriguing,
not least because such states would naively explain the
famous N3 entropy of the M5-brane theory [17]. However,
quite how one could scale such states to account for the
N3=2 entropy for M2-branes, in a controllable weakly
coupled regime, appears as tantalizingly mysterious as
ever.
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