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We study the organization of topological defects in a system of nematogens confined to the two-
dimensional sphere (S2). We first perform Monte Carlo simulations of a fluid system of hard rods
(spherocylinders) living in the tangent plane of S2. The sphere is adiabatically compressed until we reach a
jammed nematic state with maximum packing density. The nematic state exhibits four�1=2 disclinations
arrayed on a great circle. This arises from the high elastic anisotropy of the system in which splay (K1) is
far softer than bending (K3). We also introduce and study a lattice nematic model on S2 with tunable
elastic constants and map out the preferred defect locations as a function of elastic anisotropy. We find a
one-parameter family of degenerate ground states in the extreme splay-dominated limit K3=K1 ! 1.
Thus the global defect geometry is controllable by tuning the relative splay to bend modulus.
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Ordered arrays of microscopic structures on curved
interfaces provide a promising route to fabricating nano-
scale or mesoscale building blocks (mesoatoms) that may
in turn form molecules and bulk materials. One class of
mesoatoms is provided by particles self-assembling on
spherical droplets in liquid-liquid emulsions. The particles
may be isotropic or shaped. Ordered structures on spherical
interfaces always possess topological defects [1]. The lo-
cation and detailed arrangement of such defects are both
important since defects are distinctive regions which may
be functionalized to create directional bonds akin to atomic
bonds. This has been nicely illustrated recently by the
synthesis of divalent gold nanoparticles coated with self-
assembled stripes of phase-separated ligands whose two
polar defects can be functionalized. The divalent nano-
particles subsequently link spontaneously to form chains
[2].

Spherical nematics have a local twofold inversion sym-
metry and elementary disclinations of both half-integer and
integer strength. Since the total disclination strength on the
2-sphere is two [3,4], nematic ground states may possess
four �1=2 defects, two �1 defects or two �1=2s and one
�1. Functionalization of the defects in the first case could
lead to tetravalent mesoatoms with sp3-like directional
bonding [3]. The structure and arrangement of defects in
such a thin nematic shell with variable thickness has re-
cently been studied both experimentally [5] and theoreti-
cally [6]. The analyses so far have, however, been limited
to the one Frank constant approximation, in which the
bending stiffness K3 and the splay constant K1 are equal
[7]. Although fluctuations always drive these elastic mod-
uli to the same value in the long wavelength limit, we are
necessarily working at finite volume on the compact 2-
sphere. It is essential, therefore, to explore the effect of
differing bend and splay moduli on the structure of defects
in the ground state.

To this end we have performed Monte Carlo simulations
of hard rod fluids confined to the tangent plane of the
2-sphere. Adiabatically shrinking the sphere increases the

packing density and leads to a jammed state with nematic
order and four �1=2 disclinations. Since like-sign defects
repel, one might expect them to be maximally separated at
the vertices of a regular tetrahedron [3,4]. We find instead
that the four defects lie approximately on a great circle.
This can be understood as arising from the high bending
stiffness K3 compared to the splay stiffness K1. We also
analyze a coarse-grained model of a spherical nematic with
tunable Frank constants and map out the global pattern of
defects as a function of the anisotropy K3=K1. In the limit
K3=K1 ! 1, we show that the system exhibits a one-
dimensional continuum of degenerate ground states in
which the four defects form a rectangle of arbitrary aspect
ratio.

Our Monte Carlo simulation is performed in the
isobaric-isothermal (constant-NPT) ensemble with rod-
like particles interacting via hard core repulsion [8]. We
use spherocylinders with length L and diameter D (aspect
ratio L=D). Isotropic initial states of N rods are prepared
by centering each randomly oriented rod on a node of a
spherical mesh of a 2-sphere of initial radius Ri. We
perform �107 Monte Carlo cycles, each of which con-
sists of a translational and orientational trial move for
all N rods together with a volume-compression move.
The compression rate must be low enough to avoid pre-
mature jamming at low density. The simulation stops
when the system is jammed and thus cannot be further
compressed.

We simulated a system of N � 1082 rods with aspect
ratio L=D � 15. The final radius reached was Rf=D �
37:15 starting from Ri=D � 100. The final states are found
to be nematic with four �1=2 disclinations. This contrasts
with the corresponding infinite system in 2D flat space
where the densest packing state is crystalline [9]. At these
system sizes, therefore, the spatial curvature of the surface
frustrates crystalline ordering. Crystalline order is never-
theless expected to set in for larger system sizes, where the
radius of curvature becomes much larger than the rod
length. In simulations with short rods (L=D< 7) we find,
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in contrast, smecticlike domain structures at maximum
density.

To characterize the nematic order we measure the local
order parameter tensor Q��, a symmetric, traceless
second-rank tensor, by locally averaging the orientation
of m�V� rods n̂�a� within a small domain V (typically with
an area of order L2):

 Q�� �
1

m�V�

X
a2V

�
n̂�a��n̂�a�� �

1

2
���

�
: (1)

The nematic order parameter S is defined to be twice the
positive eigenvalue of Q��. Maps of S are shown in
Figs. 1(a) and 1(b). The local order parameter along the
great circle connecting the defects is also plotted versus
angular distance in Fig. 1(c). The maximum value of S is
about 0.93, in contrast with flat space where S reaches 1
[9]. The reduced maximum on the sphere results from the
frustration due to the nonzero curvature enclosed in the
region V. The defect cores are identified as the loci of
minima of the order parameter. Four �1=2 disclinations
are clearly observed to lie on a single great circle, to within
�0:15 rad, as illustrated in Fig. 1(d).

The planarity of the defect array can be explained by the
strong elastic anisotropy. It is known that, for hard rod

systems, the bend constant K3 diverges as the rod density
increases while the splay constant K1 is almost indepen-
dent of density [10,11]. This leads to K3 � K1 at high
packing density. To check this we determine the Frank
constants by fitting the local director field surrounding a
defect to a numerical minimization of the Frank free
energy [12]. We find that K3=K1 * 20.

Consider first planar nematics in the strong anisotropy
limit. It is known that �1 disclinations admit both pure
bending texture and pure-splay texture [13,14]. When the
bending and splay constants are different one of these two
textures will correspond to a minimum of the energy and
the other a maximum. The energy of a �1 disclination is
therefore given by F��1� � �min�K1; K3� ln�R=a0�, where
R is the system size and a0 is the defect core size. The
energy of a �1=2 defect, by contrast, depends on both K1

and K3. In the one Frank constant limit K1 � K3 � K, the
energy of a �1=2 disclination is one-quarter that of a �1
disclination: F���1=2�� � �K

4 ln�R=a0�. A �1 disclination
will therefore unbind to a pair of�1=2 disclinations which
may then separate. In the splay-dominated case K1 	 K3,
in contrast, the energy of�1=2 disclination is half that of a
�1 disclination: F���1=2�� � �K1

2 ln�R=a0�. Splitting a �1
defect therefore gains no energy and the total energy of two
�1=2 disclinations is independent of their separation. All
bending modes are frozen for a 2D nematic in flat space
with K3 � 1. It can be shown in this limit that the integral
curve of the director field is a geodesic (straight line). This
implies that the 2D nematic director texture is completely
determined by its configuration on a one-dimensional
curve: there is no bulk degree of freedom that one can
vary. In Fig. 2(a) we illustrate the formation and separation
of a pair of�1=2 pure-splay defects by global surgery on a
�1 pure-splay defect. The �1 defect is pulled apart hor-
izontally and the intermediate region filled with uniform
nematic texture. Clearly it is also possible to pull apart the
defect pair vertically without free energy cost. By contrast,
any infinitesimal local deformation of the state in Fig. 2(a)
generates bending deformations and is therefore forbidden
energetically.

We now extend this argument to nematic order on the
2-sphere with infinite bending stiffness. The constraint of

FIG. 1 (color online). The ground-state configuration for
spherical nematic ordering of 1082 rods with L=D � 15 is
shown as the central lines of rods for clarity, together with maps
of the local nematic order parameter. The two views are: (a) near
defects and (b) nematic bulk. The radius of the compressed
sphere is Rf=D � 37:15. The measurement of the order pa-
rameter along the great circle connecting defects is plotted as a
function of angular distance in radians in (c). The exact locations
of the four defects lying near one great circle are indicated in (d).

FIG. 2. (a) In the limit of infinite K3=K1, the separation of a
�1=2 disclination pair in the plane costs no energy. (b) On the 2-
sphere, an infinite number of states with four �1=2 disclinations
on a great circle can be generated from a state with two �1
disclinations by cut-and-rotate surgery.
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no bending again translates into the requirement that the
integral curves of the director follow geodesic lines (great
circles). Consider an initial state for which the director
field follows lines of longitude everywhere. This state, with
one �1 disclination at each pole, is clearly bending-free
and is therefore a ground state in the limit K3 ! 1. Any
local deformation of this state introduces bend and is
therefore forbidden. There are, however, global manipula-
tions that cost zero energy. As illustrated in Fig. 2(b), we
can cut the sphere into two hemispheres along a great circle
that contains both �1 disclinations, and rotate one hemi-
sphere by an arbitrary angle �. This surgery divides each
�1 disclination into two �1=2 disclinations and the re-
sultant four �1=2 disclinations all lie on the great circle
along which we cut. Note that the director field is every-
where smooth up to first order derivatives on the cut after
the surgery [15], except at the disclination cores. The
elastic free energy of the post-surgery state is therefore
independent of the rotation angle �. We have thus identi-
fied a continuous manifold of degenerate low energy states,
parameterized by the angle �, for spherical nematics in the
pure-splay limit K3 ! 1. The energy difference between
the four �1=2 disclination state and the original state with
two �1 disclinations can only come from the defect core
energies and these do not grow with radius R. It is thus
negligible for large system sizes.

Starting from a pure-splay state and rotating the director
at every point by�=2 in the tangent plane, we obtain a pure
bend state. It can also be shown that the splay and bend
constants K1 and K3 interchange under this rotation. A
system with K3=K1 	 1 should, therefore, also exhibit a
similar one-parameter family of degenerate ground states
with a coplanar configuration of defects. This is verified
below. We note that the same cut-and-rotate surgery has
been applied to spherical smectics (for which K3=K1 is
also �1) by Chantawansri et al. [16] and Blanc and
Kleman [17].

To understand better how the global configuration of
defects depends on the elastic anisotropy K3=K1, we next
analyze a lattice nematic model on S2 in which the two
Frank constants can be continuously varied. We first con-
struct a triangular lattice on the 2-sphere with N � 762
vertices. As a result of the Gauss-Bonnet theorem, twelve
of these vertices have coordination number five and form a
regular icosahedron. It turns out, however, that these crys-
talline disclinations do not significantly affect the location
of the nematic defects [18]. On every vertex a of this lattice
we define a nematic director n̂a, which is constrained to the
local tangent plane. The Hamiltonian is given by
 

H � J2

X
ha;bi

Tr�Na � Nb��Na � Nb�

� J3

X
ha;b�ci

�êab 
 Na 
 êac�Tr�Na � Nb� 
 �Na � Nc�;

(2)

where Na is the dyadic tensor n̂an̂a, while êab is the unit

vector pointing from vertex a to vertex b. In Eq. (2) ha; b �

ci means summation over all pairs of nearest-neighbor
sites b and c that are both nearest neighbors of site a.

The lattice model Eq. (2) is manifestly invariant under
spatial inversion of each director n̂a. The two body term
with coefficient J2 is precisely the 2D Maier-Saupe lattice
model of nematics, which is known to reduce, at large
scales, to the Frank free energy with equal elastic constants
K1 � K3. The three-body term with coefficient J3 couples
the directors explicitly to the underlying lattice and renders
K1 and K3 different. It can be shown [19] that at large
scales the lattice model Eq. (2) reduces to the following
Frank free energy for spherical nematics:

 F �
Z ���

g
p
d2r

�
K1

2
� ~D 
 n̂�2 �

K3

2
� ~D 
 t̂�2

�
; (3)

where ~D is the covariant derivative and t̂ is the unit tangent
vector perpendicular to the director n̂. We note that in
going from Eq. (2) to Eq. (3), however, terms of higher
order (in Dn̂) have been dropped. These terms, though
irrelevant in the renormalization group sense, may be
quantitatively important for small system sizes. The pa-
rameter J3 in Eq. (2) turns out to be proportional to �K3 �
K1�=�K3 � 2K1�. The coefficient of proportionality, how-
ever, depends on microscopic details [19].

Starting from a random state, we determine the ground
state of the model Eq. (2) using simulated annealing. We
use the same method to identify the nematic defects as for
the hard rods simulation. We first simulate the one Frank
constant case for which J3 � 0 and find that the four
defects form a regular tetrahedron as expected [3,4]. A
nonzero three-body coupling J3 leads to many metastable
states. To avoid them, we start from the minimum energy
configuration for the one Frank constant case and turn on
the parameter J3 at sufficiently low temperature. We then

FIG. 3 (color online). The effect of the anisotropy J3=J2 on
the configuration of defects. As the anisotropy is turned on the
defects shift from a tetrahedral geometry to a coplanar great-
circle alignment. The angular deviation of the defect positions
from the great circle are measured as a function of the anisot-
ropy.
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cool down again to reach the ground state. We find that the
nematic texture becomes increasingly splay (bend) domi-
nated as J3 increases (decreases) from zero. We also mea-
sure the angular deviations of the defect locations from the
circumscribed great circle, determined by a least squares
fit. As shown in Fig. 3, the defects gradually shift toward
a great circle as jJ3j increases. When J3=J2 * 1:2 or
&� 0:6, the director field develops a local instability,
from which we infer that the splay or bend constant (at
short scales) becomes negative. Nevertheless, the defect
array is not strictly planar at J3=J2 � 1:2 or �0:6. We
suspect that this is due to the higher order terms that
have been dropped in going from the discrete model
Eq. (2) to the continuous model Eq. (3), which in principle
can renormalize the two Frank constants and make them
scale dependent. Such effects, however, are expected to
diminish at large system sizes.

The lattice nematic model can be used to display ex-
plicitly the 1D manifold of degenerate ground states. For
J3=J2 � 1:2, we start with a low energy state obtained by
simulation of Eq. (2) in which the four defects lie approxi-
mately on the equator with an angular separation of 90�.
We then force two defects to move within the great circle
by rotating all the directors in the lower hemisphere.
Starting from this new state we then minimize Eq. (2) again
at zero temperature. As shown in Fig. 4, the energy of all
low energy states thus obtained, for different angular sepa-
ration �, agree to within �2%. This small difference is
likely due to finite size effects.

In this letter we have studied the global configuration of
defects in the ground state of a spherical nematic using two
different models. We show that the tetrahedral configura-
tion crosses over to a great-circle configuration as we

increase the anisotropy of the elastic constants. Our work
therefore explicitly demonstrates that defect positions can
be controlled by varying the elastic anisotropy. This result
should be relevant to designing and fabricating mesoscopic
molecules and bulk materials by attaching ligands to func-
tionalized defect sites.
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