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We show that a simple gravitational theory can provide a holographically dual description of a
superconductor. There is a critical temperature, below which a charged condensate forms via a second
order phase transition and the (dc) conductivity becomes infinite. The frequency dependent conductivity
develops a gap determined by the condensate. We find evidence that the condensate consists of pairs of
quasiparticles.
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Introduction.—A remarkable result to emerge from
string theory is the AdS/CFT correspondence [1], which
relates string theory on asymptotically anti-de Sitter space-
times to a conformal field theory on the boundary. The
correspondence provides an established method for calcu-
lating correlation functions in a strongly interacting field
theory using a dual classical gravity description [2].
Transport quantities are extracted by solving Einstein’s
equations in the dual theory. This has lead to successful
applications of AdS/CFT to nuclear physics, in particular,
the results of heavy ion collisions at RHIC [3]. Connec-
tions to condensed matter systems are being explored;
phenomena such as the Hall effect [4] and Nernst effect
[5] have dual gravitational descriptions. Here we exhibit a
dual gravitational description of superconductivity.

Conventional superconductors, including many metallic
elements (Al, Nb, Pb, . . .), are well described by BCS
theory [6]. However, basic aspects of unconventional
superconductors, including the pairing mechanism, remain
incompletely understood. There are many indications that
the normal state in these materials is not described by the
standard Fermi liquid theory [7]. Although there is a long
way to go before making sharp connections between our
results and actual experimental systems, we hope that a
tractable theoretical model of a strongly coupled system
which develops superconductivity will be of interest.
Several important unconventional superconductors, such
as the cuprates and organics, are layered and much of the
physics is 2� 1 dimensional. Our model will also be 2� 1
dimensional.

To map a superconductor to a gravity dual, we introduce
temperature by adding a black hole [8] and a condensate
through a charged scalar field. To reproduce the supercon-
ductor phase diagram, we require a system that admits
black holes with scalar hair at low temperature, but no
hair at high temperature. While neutral AdS black holes
can have neutral scalar hair only if the theory is unstable
[9], Gubser has recently suggested that a charged black
hole will support charged scalar hair if the charges are large
enough [10]. We consider a simpler version of Gubser’s

bulk theory and show that it indeed provides a dual de-
scription of a superconductor.

The model: condensing charged operators.—We start
with the planar Schwarzschild–anti-de Sitter black hole

 ds2 � �f�r�dt2 �
dr2

f�r�
� r2�dx2 � dy2�; (1)

where f � r2

L2 �
M
r . Here L is the AdS radius and M

determines the Hawking temperature of the black hole:
T � 3M1=3

4�L4=3 . This black hole is 3� 1 dimensional, and so
will be dual to a 2� 1 dimensional theory. In this back-
ground, we now consider a Maxwell field and a charged
complex scalar field, with Lagrangian density [11]

 L � �1
4F

abFab � V�j�j� � j�� iA�j2: (2)

For concreteness, we will focus on the case V�j�j� �

� 2j�j2

L2 . The negative mass squared is above the
Breitenlohner-Freedman bound [12] and hence is stable.
It corresponds to a conformally coupled scalar in our
background (1) and arises in several contexts in which
the AdS4=CFT3 correspondence is embedded into string
theory. For instance, the truncation ofM theory on AdS4 �
S7 to N � 8 gauged supergravity has scalars and pseudo-
scalars with this mass, dual to the bilinear operators
tr��I�J� and tr��I�J� in the dual N � 8 Super Yang-
Mills theory, respectively. However, we should note that
our Lagrangian (2) has yet to be obtained fromM theory. It
is a minimal phenomenological model. We expect that our
choice of mass is not crucial, and qualitatively similar
results will hold, e.g., for massless fields.

We will work in a limit in which the Maxwell field and
scalar field do not backreact on the metric. This limit
describes fields that are small in Planck units. This de-
coupled Abelian-Higgs sector can be obtained from the full
Einstein-Maxwell-scalar theory of [10] through a scaling
limit in which the product of the charge of the black hole
and the charge of the scalar field is held fixed while the
latter is taken to infinity. Thus we will obtain solutions of
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nonbackreacting scalar hair on the black hole. Our simple
model captures the physics of interest.

Taking a plane symmetric ansatz, � � ��r�, the scalar
field equation of motion is

 �00 �
�
f0

f
�

2

r

�
�0 �

�2

f2 ��
2

L2f
� � 0; (3)

where the scalar potential At � �. With Ar � Ax � Ay �
0, the Maxwell equations imply that the phase of � must
be constant. We take � to be real. The equation for the
scalar potential � is the time component of the equation of
motion for a massive vector field

 �00 �
2

r
�0 �

2�2

f
� � 0; (4)

where 2�2 is the, in our case, r dependent mass. The
charged condensate has triggered a Higgs mechanism in
the bulk theory. At the horizon, r � r0, for �dt to have
finite norm, � � 0, and (3) then implies � � �3r0�0=2.
Thus, there is a two parameter family of solutions which
are regular at the horizon. Integrating out to infinity, these
solutions behave as

 � �
��1�

r
�

��2�

r2 � � � � ; � � ��
�
r
� � � � : (5)

For �, both of these falloffs are normalizable [13], so one
can impose the boundary condition that either one vanishes
[14]. Imposing the condition that either ��1� or ��2� vanish
leaves a one parameter family of solutions.

Properties of the dual field theory can be read off from
the asymptotic behavior of the solution. The asymptotic
behavior (5) of � yields the chemical potential � and
charge density � of the field theory. The condensate of
the scalar operator O in the field theory dual to the field �
is given by

 hOii �
���
2
p

��i�; i � 1; 2 (6)

with the boundary condition �ij��j� � 0. The
���
2
p

normal-
ization simplifies subsequent formulae. Note that Oi is an
operator with dimension i. From this point on we will work
in units in which the AdS radius is L � 1. Recall that T has
mass dimension one, and � has mass dimension two so
hOii=T

i and �=T2 are dimensionless quantities.

An exact solution to Eqs. (3) and (4) is clearly � � 0
and � � �� �=r. It is difficult to find other analytic
solutions to these nonlinear equations. However, it is
straightforward to solve them numerically. We find that
solutions exist with all values of the condensate hOi. As
shown in Fig. 1, in order for the operator to condense, a
minimal ratio of charge density over temperature squared
is required.

The right curve in Fig. 1 is qualitatively similar to that
obtained in BCS theory, and observed in many materials,
where the condensate goes to a constant at zero tempera-
ture. The left curve starts similarly, but at low temperature
the condensate appears to diverge as T�1=3. When the
condensate becomes very large, the backreaction on the
bulk metric can no longer be neglected. At extremely low
temperatures, we will eventually be outside the region of
validity of our approximation.

By fitting these curves, we see that for small condensate
there is a square root behavior that is typical of second
order phase transitions. Specifically, we find

 hO1i � 9:3Tc�1� T=Tc�
1=2; as T ! Tc; (7)

where the critical temperature is Tc � 0:226�1=2 and

 hO2i � 144T2
c �1� T=Tc�1=2; as T ! Tc; (8)

where now Tc � 0:118�1=2. The continuity of the transi-
tion can be checked by computing the free energy. Finite
temperature continuous symmetry breaking phase transi-
tions are only possible in 2� 1 dimensions in the large N
limit (i.e., the classical gravity limit of our model), where
fluctuations are suppressed. These transitions will become
crossovers at finite N.

For T < Tc a charged scalar operator, hO1i or hO2i, has
condensed. It is natural to expect that this condensate will
lead to superconductivity.

Maxwell perturbations and the conductivity.—We now
compute the conductivity in the dual CFT as a function of
frequency. This requires us to solve for fluctuations of the
vector potential Ax in the bulk. The Maxwell equation at
zero spatial momentum and with a time dependence of the
form e�i!t is
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FIG. 1. The condensate as a function of temperature for the two operators O1 and O2. The condensate goes to zero at T�Tc/�1=2.
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 A00x �
f0

f
A0x �

�
2

f2 �
2�2

f

�
Ax � 0: (9)

To compute causal behavior, we solve this equation with
ingoing wave boundary conditions at the horizon [16]:
Ax / f

�i!=3r0 . The asymptotic behavior of the Maxwell
field at large radius is seen to be

 Ax � A�0�x �
A�1�x
r
� � � � : (10)

The AdS/CFT dictionary tells us that the dual source and
expectation value for the current are given by

 Ax � A�0�x ; hJxi � A�1�x : (11)

Now from Ohm’s law we can obtain the conductivity

 ��!� �
hJxi
Ex
� �

hJxi
_Ax
� �

ihJxi
Ax
� �

iA�1�x

A�0�x
: (12)

In Fig. 2 we plot the frequency dependent conductivity
obtained by solving (9) numerically. The horizontal line
corresponds to temperatures at or above the critical value,
where there is no condensate. The conductivity in the
normal phase is frequency independent in theories with
AdS4 duals [17]. The subsequent curves describe succes-
sively lower values of the temperature (for fixed charge
density). As the temperature is lowered, a gap opens. The
gap becomes increasingly deep until the (real part of the)
conductivity is exponentially small.

There is also a delta function at ! � 0 which appears as
soon as T < Tc. This can be seen by looking at the imagi-
nary part of the conductivity. The Kramers-Kronig rela-
tions relate the real and imaginary parts of any causal
quantity, such as the conductivity, when expressed in fre-
quency space. One of the relations is

 Im 	��!�
 � �
1

�
P
Z 1
�1

Re	��!0�
d!0

!0 �!
: (13)

From this formula we can see that the real part of the
conductivity contains a delta function, Re	��!�
 �
���!�, if and only if the imaginary part has a pole,
Im	��!�
 � 1=!. We find that there is indeed a pole in

Im	�
 at ! � 0 for all T < Tc. The superfluid density is
the coefficient of the delta function [18]

 Re 	��!�
 � �ns��!�: (14)

By (13), ns is also the coefficient of the pole in the
imaginary part Im	��!�
 � ns=! as !! 0. We find that
the superfluid density vanishes linearly with Tc � T:

 ns � Ci�Tc � T� as T ! Tc; (15)

where C1 � 16:5 and C2 � 24, for the O1 and O2 cases.
In Fig. 3 we rescaled the small T=Tc plots of Fig. 2 by

plotting the frequency in units of the condensate. The
curves tend to a limit in which the width of the gap is
proportional to the size of the condensate. The differing
shapes of the plots in Fig. 3 are precisely what is expected
from type II and type I coherence factors, respectively [6].
Type II coherence suppresses absorption near the edge of
the gap, explaining the slower rise of Re	�
 in the left plot.
It is possible that this difference is due to the operator O1

being a pair of bosons and O2 a pair of fermions, as in the
case of AdS4 � S7.

The Ferrell-Glover sum rule states that
R

Re	�
d! is
independent of temperature. The area missing under the
curve Re	�
 due to the gap is made up by the delta function
at ! � 0. That Re	�
 exceeds the value one in Fig. 3
(right) implies then that the superfluid density ns must be
correspondingly reduced for the O2 system compared with
the O1 system for T � Tc.

We can also compute the contribution of the normal,
nonsuperconducting, component to the dc conductivity.
Let us define

 nn � lim
!!0

Re	��!�
: (16)

From our numerics we obtain

 nn � e��=T; for
�

T

 1; (17)

where we have � � hO1i=2 and � �
����������
hO2i

p
=2.

Numerically this factor of 1=2 is accurate to at least 4%.
From (17), � is immediately interpreted as the energy gap
for charged excitations. The gap we found previously in the
frequency dependent conductivity was 2�. The extra factor
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FIG. 2. The formation of a gap in the real, dissipative, part of the conductivity as the temperature is lowered below the critical
temperature. Results shown for both the O1 operator (left) and the O2 operator (right). There is also a delta function at ! � 0. The
rightmost curve in each plot corresponds to T=Tc � 0:0066 (left) and T=Tc � 0:0026 (right).
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of 2 is expected if the gapped charged quasiparticles are
produced in pairs, suggesting a ‘‘pairing mechanism’’ is at
work in our model. Our results for � are suggestive of
strong pairing interactions. In Fig. 1 (right) at T � 0 we
found 2� � 8:4Tc, which might be compared with the
BCS prediction 2� � 3:54Tc. The larger value is expected
for deeply bound Cooper pairs. Indeed, in Fig. 1 (left), �
actually diverges at low T.

It is natural to ask if one can reproduce this limiting
low temperature behavior by just taking M � 0 in our
background metric (1). One problem is that there are no
solutions to the field equations (3) and (4) which are
smooth on the horizon of the Poincaré patch.
Nevertheless, for the O1 case, we have observed numeri-
cally that at low temperatures, � � hO1i=

���
2
p
r. Taking

M ! 0 where f � r2, (9) can be solved exactly to yield

Ax�A
�0�
x exp��

�����������������������
hO1i

2�!2
p

=r�. This exact result then
produces the nonzero conductivities

 � �
i
������������������������
hO1i

2 �!2
p

!
sgn�hO1i �!� (18)

via (12). The curves on the left of Fig. 3 are well approxi-
mated by the conductivity (18). We have included (18) as a
dashed curve in this plot.

Discussion.—We have shown that a simple 3� 1 di-
mensional bulk theory can reproduce properties of a 2� 1
dimensional superconductor. Below a second order phase
transition the dc conductivity becomes infinite and an
energy gap for charged excitations is formed.

There are many extensions that we hope to consider
elsewhere: (i) By considering spatially varying fields and
an external magnetic field, one can compute the super-
conducting coherence length and penetration depth, re-
spectively. (ii) One would like to consider a wider class
of models by allowing for more general masses for the
charged scalar field. (iii) The primary consequence of
backreaction on the bulk spacetime metric should be a
divergence in the dc conductivity, as a constant external
field accelerates the charged medium. (iv) Perhaps the
most interesting question is to understand the ‘‘pairing
mechanism’’ in field theory that leads to a condensate in
these systems.
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FIG. 3. The gap at small T=Tc, with frequency normalized by the condensate. The dashed curve on the left plot is (18).
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