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The dynamics of matter waves in linear and nonlinear optical lattices subject to a spatially uniform
linear force is studied both analytically and numerically. It is shown that by properly designing the spatial
dependence of the scattering length it is possible to induce long-living Bloch oscillations of gap-soliton
matter waves in optical lattices. This occurs when the effective nonlinearity and the effective mass of the
soliton have opposite signs for all values of the crystal momentum in the Brillouin zone. The results apply
to all systems modeled by the periodic nonlinear Schrodinger equation, including propagation of light in
photonic and photorefractive crystals with tilted band structures.
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A striking consequence of the theory of Bloch electrons
in a perfect crystal [1] is the one concerning the dynamical
localization of a charge particle in a uniform electric field,
a phenomenon which has been known as Bloch oscillation
(BO) [2]. Besides solid state physics, where the phenome-
non has been observed only in recent times [3], it is
possible to implement BO in nonlinear optics, using light
beams in arrays of waveguides [4], laterally confined
Bragg mirrors [5], microcavities [6], in photorefractive
crystals [7], or in systems of either linear ultracold atoms
[8] or Bose-Einstein condensates (BECs) [9] in optical
lattices (OLs). Apart from its fundamental significance,
the interest in BO arises mainly from perspectives of
practical applications. In this context we mention the use
of BO for metrological tasks, including precise definition
of h/m [10] and measurement of forces at the micrometer
scale such as the Casimir-Polder force [11] and gravity
[12]. Recently, BO were also suggested as a tool for
controlling light in coupled-resonator optical waveguides
[13]. In all these diverse contexts BO have been observed
mainly in the linear regimes. In most typical situations,
however, the nonlinearity appears as an intrinsic feature of
the system which cannot be eliminated without loosing the
phenomenon. In the case of BEC, for example, the non-
linearity induced by two-body interactions allows the en-
hancement of the wave function localization through the
formation of gap solitons [14]. The enhancement of local-
ization in turn permits us to increase the spatial resolution
of the BO, a feature which could be very useful for high
precision metrological tasks.

The fact that BO can exist in the presence of interactions
was first recognized in the context of nonlinear discrete
systems [15]. For periodic continuous models of the non-
linear Schrodinger (NLS) type, such as ones describing
matter waves in OLs [16], the existence of BO becomes
more problematic because of nonlinearity induced insta-
bilities in the underlying linear system. These instabilities
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can be simply understood by observing that in a usual OL
at the edges of an allowed band the effective mass has
always opposite signs. This implies that if a Bloch state is
modulationally stable (in presence of a constant nonline-
arity) at one edge of the band, it must be necessarily
unstable at the other band edge [18]. Instabilities and
enhanced dispersion have been extensively investigated
both theoretically [18,19] and experimentally [20] and
have been identified as the primary causes for the short
lifetimes of BO of matter waves observed both in numeri-
cal [21] and in real experiments [20].

In this Letter we show for the first time that by properly
designing the nonlinearity in a system it is possible to
achieve long-living BO of nonlinear waves. We propose
to control the existence and stability properties of gap
solitons, which are responsible for the distortionless dy-
namics of wave packets, by means of a spatial periodic
modulation of the scattering length a; using optically
induced Feshbach resonance [22] (alternatively, spatially
inhomogeneous nonlinearity can be produced by a periodic
magnetic field [23]). This modulation corresponds to a
nonlinear OL whose amplitude, considered as a free pa-
rameter, can be used to change the stability properties of
the Bloch states at the edges of the band. We show that the
parameter regions for which Bloch states become unstable
in the whole band coincide with those for which long-lived
BO of matter waves become possible. A condition for this
to occur is that the effective nonlinearity and the effective
mass have opposite signs for all values of the wave vector
in the Brillouin zone (BZ). We mention that periodically
varying nonlinearities were also considered in nonlinear
optics [24] for the sake of compensating phase mismatch in
second harmonic generation. No use of this technique,
however, has been suggested so far to overcome the prob-
lem of the decay of BO in a nonlinear regime. Although in
this Letter we concentrate on long-living BO of BEC gap
solitons, similar results apply also to gap solitons of pho-
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tonic and photorefractive crystals with tilted band
structures.
We start with the following normalized NLS equation

iy, = = + yxp + UWY + GOy, (D

describing an array of BECs in linear and nonlinear
ar-periodic lattices of the form U(x) = U(—x) = U(x +
) and G(x) = G(x + 7), respectively, and the external
linear force 7y arising from an uniform acceleration of the
lattices. In Eq. (1) the spatial and temporal variables are
measured in units of d/ 7 and 1/ Eg, respectively, while the
energy is measured in units of the recoil energy Ep =
h?>m?/(2md?), where d is the lattice period and m is the
atomic mass. In the absence of nonlinearity, G(x) = 0, we
have the familiar framework of band theory, with the linear
eigenvalue problem —d*¢,,,/dx* + U(x)@,, = E,(q) ¢,
and Bloch function ¢,,,, n denoting the band index and ¢
the wave vector inside the first BZ ¢ € [—1, 1]. The peri-
odicity of the linear OL induces a band spectrum for which
E,(q) are periodic in the reciprocal space. The effect of the
linear force on a Bloch wave packet is described by the
semiclassical equations of motion

x = wv,(q) = dE,(q)/dq,

where x and g denote the wave packet centers in real and in
reciprocal spaces, respectively, v,,(¢) is the Bloch velocity,
and the dot stands for the time derivative. From these
equations it follows that, when transitions to other bands
can be neglected, e.g. for small vy, the momentum distri-
bution moves through g-space at a constant speed, while
preserving its shape. In the real space the wave packet
oscillates back and forth executing BO with spatial and
temporal periods given by X, = AE,/2|y| (AE, is the
bandwidth) and T, = 2/|y|, respectively.

To understand the mechanism preventing the existence
of BO in the nonlinear case, we concentrate on the lowest
energy band (we will omit therefore the band index) and
assume the linear force to be weak enough y < 1 [25].
Next we search for a localized solution of (1) in the form of
a multiple scale expansion ¢ = v + yip, + - - -,
with ¢; functions of the scaled temporal and spatial vari-

qg==7 2

ables 1; = y/2t and X; = y2x (j=1,2,...), respec-
tivelyy, As  first order function we  take
U = A(r, X)eig(’)goq(T) (x) where A is the envelope depend-
ing on slow time 7 = ¢ and on slow spatial variable X =
JY(x — v(7)1) with v exactly given by the Bloch velocity
v(q), q is the carrier wave vector depending on 7, and £(¢)
is a phase determined by the equation d€/dr = E(q(yt)).
By substituting the above ansatz into Eq. (1) and separating
it into different orders of y'/2, we find that the equation of
the first two orders are automatically satisfied (see, e.g.,
[18]). The nonlinearity appears at the third order of the
expansion, O(y3/2), where for eliminating secular terms
one has to use Eqs. (2) [26]. Then the envelope A evolves

according to the NLS equation
iA; + 2M(9) ™' Axx — x(@)lAPA =0, (3)

where M(q) = (d>E(q)/dq*)~" is the effective mass and
x(q@) = |7, G)|@,m(x)|*dx the effective nonlinearity.
From this we conclude that for gap solitons of Eq. (1) the
semiclassical equations (2) continue to be valid also in the
nonlinear case. Notice that although we have indicated g as
an argument in the above definitions of M, y, the group
velocity, the effective mass and the effective nonlinearity
are functions of the slow time 7.

The existence of solitons of Eq. (3), however, is condi-
tioned by the constrain M(q) x(g) < 0, this assuring insta-
bility of the Bloch state with ¢. Since at different band
edges the effective mass has opposite signs, it is clear from
the expression of y(g) that at a constant nonlinearity
G(x) = const stationary gap solitons can exist only at
one of the edges (for which M y < 0). This results in decay
of BO simply because the wave packet moving according
to (2) will necessarily reach the edge of the band where
My > 0, i.e., where the Bloch state becomes stable due to
the change of sign of the effective mass. Thus, to achieve
long-living BO one must require M(g) x(q) < 0 for all ¢ in
the BZ, this assuring the conditions for existence of a
soliton in the whole band. The above condition can be
achieved by a proper design of the nonlinearity.

For all numerical results we fix the OLs in Eq. (1) to be
of the most typical form: U(x) = —V cos(2x), and G(x) =
g + Gcos(2x), with V, G, considered as free parameters
and g fixed as in Fig. 1 (other numerical values give similar
results). Denoting by x,; the effective nonlinearities at the
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FIG. 1 (color online). (a) Curves G (V) separating domains
where  xo:(V) =0, for g= —0.777. Points A, B, C,
correspond to the parameters used in Fig. 2(b) (point A),
Figs. 2(a) and 3(a), (point B), and Fig. 3(b) (point C). Long-
living BO exist for parameters inside the shadowed domain.
(b) The inverse effective mass M ™! (solid line) and the effective
nonlinearity y (dashed-dotted line) vs g, for the point B of
panel (a). (c) My vs g for parameters corresponding to point B
in panel (a). Points gy = 0.547 and ¢, = 0.514 in panels
(b),(c), denote the values of ¢ where y and M~ are,
respectively, equal to zero.

030405-2



PRL 101, 030405 (2008)

PHYSICAL REVIEW LETTERS

week ending
18 JULY 2008

<107

d

4 x10° 8 10

AL UAAAA
%0 25 0,25 0 0 2

FIG. 2 (color online). Long-living (a) and decaying (b) BO for
G = 1.0 [point B in Fig. 1(a)] and G = 0.95 [point A in
Fig. 1(a)], respectively. In both cases the initial condition is a
stationary gap-soliton located at Xy = —657 with E = —0.938
near the lower edge. Other parameters are vy = —0.001 and
V = 3.0. The period and the amplitude of the BO are T, =
2-10% and X, =~ 32.57 (for the ’Li condensate, mentioned in
the text, these correspond to 45.2 ms and 32.5 pwm). (c¢) The
profile of the gap soliton in panel (a) at the fifth right turning
point (thin lines) compared with the stationary state (thick lines)
with the same N = 2.420 (=3800 atoms in physical units) and
energy E = —0.732 close to the upper edge of the band.
(d) Energy of the gap soliton vs time for long-living (G =
1.0, solid line) and decaying (G = 0.95, dashed line) BO. The
lowest allowed band is E € [—0.937, —0.733].

edges of the band and by G ; the values of G at which x
become zero (indexes “0”, “1” refer to ¢ = 0, 1, respec-
tively) we have that G = G, implies y,; = 0 and the
condition M ; xo,1 < O for the existence of gap-solitons at
the both edges is satisfied if G; < G < G, (the shadowed
region of Fig. 1, e.g., in point B). On the contrary, parame-
ters above the G, curve (e.g. point C) or below the G,
curve (e.g., point A) allow for the existence of gap solitons
only at one of the edges (at the lower or the upper edge,
respectively).

According to our analysis we should expect long-living
BOs for amplitudes of the OLs corresponding to points
between the two curves G (V) in Fig. 1. For the sake of
definiteness we choose points A, B, and C as shown in
panel (a). Point B corresponds to almost an optimal design
of the OLs as it is clear from panels (b) and (c) of Fig. 1.
Note that while g, and g, are very close to each other, they
do not exactly coincide, this giving a small interval g, <
q < qu where envelope solitons do not exist. This region,
however, being smaller than the spectral width of the
soliton and very small compared to the size of the BZ,
has no disruptive influence on the soliton dynamics. On the

contrary, points A, C, in Fig. 1(a) correspond to the case in
which the BO should quickly decay.

To check these predictions we have performed direct
numerical integrations of Eq. (1). In Fig. 2(a) we show the
time evolution of a gap soliton for parameters of the OLs
corresponding to point B in Fig. 1. The existence of long-
living BO, with temporal period and spatial amplitude
perfectly matching the semiclassical estimates, is evident.
The turning points of the spatial dynamics correspond to
energies inside the gaps (close to band edges) for which
stationary solitons exist. Comparing the shape of the sta-
tionary state at the top of the band with profiles of the
dynamical solution at the right turning points, we find that
they practically coincide [see Fig. 2(c)]. Also, the dynami-
cal profiles of the soliton at all subsequent turning points
are practically indistinguishable from the one depicted in
Fig. 2(c). Numerical simulations performed on longer time
scales (up to t = 2 X 10*) showed no appreciable decay of
the BO and perfect matching of the soliton shapes at the
turning points. This behavior contrasts with the one ob-
served in Fig. 2(b) where the dynamics of the soliton is
shown for a non optimal design of the OLs (point A in
Fig. 1): now BO undergo fast decay and the soliton quickly
spreads out. The difference in the two types of BO be-
comes also evident by computing the soliton energy
E(t) =y [Zo(lihl> + U + GLolyl*)dx, with N =
%% ||>dx denoting the soliton norm. This is shown in
Fig. 2(d) from which we see that stable BO correspond to
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FIG. 3 (color online). Same as in Fig. 2 but with the BO started
from a gap soliton near the top of the band at E = —0.732, with
initial position X, = 0. Panels (a) and (b) refer, respectively, to
points B and C, of Fig. 1, while panels (c) and (d) show cor-
responding quantities as in Fig. 2. In (c) we compare solitons at
the fifth left turning point with the stationary state at E =
—0.938 near the lower edge, while in panel (d) the dashed line
refers to G = 1.05.
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perfectly periodic trajectory (solid line) while decaying BO
correspond to decays of the oscillations of the energy
(dashed line). Similar phenomena exist also if the BO is
started from stationary states at the top of the band, with
parameter values corresponding to points B, C, of Fig. 1(a)
(see Fig. 3).

To discuss possible parameter designs for experimental
implementations of the long-living BO we refer to a 'Li
condensate in a trap of transverse size a| = 2um and with
longitudinal linear and nonlinear OLs of the period d =
1 um. The dimensionless units of time, space, and energy
in this case correspond to 22.6 us, 318.3 nm, and 4.64 X
10739 J, respectively. The long-living BO dynamics de-
picted in Figs. 2(a) and 3(a), can be produced by an
external force of 1.45 X 1072° N (corresponding to an
acceleration of the OLs of the order of ~1.24 m/s?) acting
on a gap soliton with about 3800 atoms, which is computed
through the soliton norm N as (a3 7/4da,)N. The non-
linear OL can be created by optically induced Feshbach
resonance leading to a spatial variation of the scattering
length of the form a(x) = a + alV cos(2mx/d), with
a” = —1.554 nm and 4" =2 nm. For the parameters
of Fig. 1, the long-living BO then occur for an ampli-
tude of the linear OL V = 3Ep, and a spatial variation of

the scattering length in the range 1.948 nm < alV <
2.058 nm.

To conclude, we have shown how to achieve long-living
BO in a system described by the NLS equation with
periodic coefficients. This phenomenon occurs when the
effective nonlinearity and the effective mass have opposite
signs for all values of the wave vector, a condition which
can be satisfied by properly modulating the nonlinearity in
space. The results apply to numerous physical systems
including matter waves, and photonic and photorefractive
crystals.
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