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We study a planar model of a nonrelativistic electron in periodic magnetic and electric fields that
produce a 1D crystal for two spin components separated by a half-period spacing. We fit the fields to
create a self-isospectral pair of finite-gap associated Lamé equations shifted for a half-period, and show
that the system obtained is characterized by a new type of supersymmetry. It is a special nonlinear
supersymmetry generated by three commuting integrals of motion, related to the parity-odd operator of
the associated Lax pair, that coherently reflects the band structure and all its peculiarities. In the infinite-
period limit it provides an unusual picture of supersymmetry breaking.
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Introduction.—Supersymmetry as a fundamental sym-
metry of Nature still waits for experimental confirmation,
but as a kind of symmetry between bosonic and fermionic
states, it already turned out to be fruitful in diverse areas,
including nuclear [1,2], atomic, solid-state, and statistical
physics [3]. Supersymmetric quantum mechanics [3] was
introduced under investigation of the problem of super-
symmetry breaking in field theory [4]. In the simplest case
a system is characterized there by a 2� 2 diagonal matrix
Hamiltonian, H � diag�H�; H��, and by two antidiagonal
matrix integrals of motion (supercharges) Q1 and Q2 �
i�3Q1. Supercharges are first order differential operators
generating an N � 2 superalgebra

 fQa;Qbg � 2�abH; �Qa;H� � 0: (1)

Such a system has an additional integral of motion � � �3,
�2 � 1, which classifies the states with � � �1 and �1,
by convention, as bosonic and fermionic states. Since
��; H� � 0 and f�; Qag � 0, the Hamiltonian and super-
charges are identified as bosonic and fermionic generators.
The cases of unbroken and broken supersymmetry are
distinguished by the Witten index �, defined as the differ-
ence between the total numbers of bosonic and fermionic
states. In a nonperiodic one-dimensional system, unbroken
supersymmetry is characterized by one singlet ground state
of zero energy and � � 0; for broken supersymmetry there
is no zero energy singlet state and � � 0. However, as it
was observed in [5,6], supersymmetric periodic systems
may support two zero energy ground states, and then � �
0 in the unbroken case. Some systems investigated there
possess a specific property of self-isospectrality, meaning
that corresponding superpartner potentials V� and V� are
given by the same periodic function shifted for a half of a
period 2L, V��x� L� � V��x�. They belong to a class of
finite-gap periodic systems, which play an important role,
in particular, in condensed matter physics [7] and in the
theory of nonlinear integrable systems [8].

In a nonlinear generalization of supersymmetric quan-
tum mechanics [9], supercharges Qa are higher (n > 1)
order differential operators generating a nonlinear super-

algebra fQa;Qbg � 2�abPn�H�, with Pn�H� a polynomial
of order n. The number of singlet states can take there any
value from 0 to n, and, as in periodic models with linear
supersymmetry, the Witten index does not characterize
supersymmetry breaking [9,10]. This indicates that in pe-
riodic finite-gap systems nonlinear supersymmetry may
play an important role.

To investigate the question of the presence and nature of
nonlinear supersymmetry in periodic finite-gap systems, in
this Letter we study a planar model described by the Pauli
Hamiltonian for a nonrelativistic electron in periodic elec-
tric and magnetic fields. The model belongs to a broad
class of periodic systems investigated by Novikov et al.
[11]. It is well known that in the absence of an electric field
the model, which includes the Landau problem as a par-
ticular case, is characterized by a supersymmetry with the
usual linear superalgebraic structure (1) [3]. We choose
periodic magnetic and electric fields in such a form that the
spin-up and -down components of the electron wave func-
tion feel the same one-dimensional effective periodic po-
tential but with a shift of half of the period. As a result, the
effective potential of superextended system satisfies a
property of self-isospectrality. Vector and scalar potentials
are fitted to produce the associated Lamé equation with two
integer parameters m and l, which belongs to a broad class
of finite-gap systems with a smooth potential; see Eq. (3)
below [8,12,13]. We find here a special nonlinear super-
symmetry of the previously unknown structure, in which
all the peculiarities of the band structure of the system are
imprinted. In the infinite-period limit our system provides
an unusual picture of supersymmetry breaking rooted in its
nonlinearity.

Model.—Consider a nonrelativistic electron confined to
a plane and moving in the presence of an electric field,
given by a scalar potential ��x; y�, and a perpendicular
magnetic field Bz�x; y�. It is described by the Pauli
Hamiltonian

 He � �px � Ax�
2 � �py � Ay�

2 � �3Bz ��; (2)
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where the units are @ � c � 2m � �e � 1. Let us restrict
Bz and � by the condition that they depend only on x. We
choose Ax � 0, Ay � w�x�, then Bz �

dw
dx . Present the

wave function in the form ��x; y� � ei�y �x�, where �,
�1< �<1, is the eigenvalue of py. Taking w�x� �
� d
dx ln�dnx� and ��x� � �w2�x� � �w�x� � �, with ap-

propriate choice of constant parameters �, �, � and �,
we reduce (2) to a quantum periodic system given by the
diagonal matrix Hamiltonian H with up (�) and down (�)
components of the form H	m;l � �

d2

dx2 � V	m;l�x�. Here
V�m;l�x� � V�m;l�x� L�,

 V�m;l�x� � �Cmdn2x� Cl
k02

dn2x
� c; (3)

Cm � m�m� 1�, Cl � l�l� 1�, m and l are integers such
that C2

m � C2
l � 0, c is a constant; dnx � dn�x; k� is the

Jacobi even elliptic function, satisfying a relation dn�x�
K� � k0=dnx, with modulus 0< k< 1 and real and imagi-
nary periods 2K and 4iK0, K�k� is the elliptic complete
integral of the first kind, K0 � K�k0�, and k0 is a comple-
mentary modulus, k02 � 1� k2. The Hamiltonian H ob-
tained in this way then describes a pair of two parity-even
associated Lamé systems, shifted one with respect to the
other for the half of the real period 2L of the potential, that
is equal to 2K for Cm � Cl, and K for Cm � Cl. The cases
with CmCl � 0 correspond to the Lamé system [8]. By the
Landen transformation [14], the case Cm � Cl is reduced
to the case of the Lamé system with same value of parame-
ter Cm but with Cl � 0, and with the same imaginary
period but the real period divided in two. Taking into
account that C�m�1 � Cm, without loss of generality one
can assume that m> l 
 0. Isospectral subsystems H�m;l
and H�m;l belong to a class of finite-gap systems with even
potential and number of energy gaps in the spectrum equal
to m [8,12].

Hidden bosonized supersymmetry.—Consider an n-gap
periodic system with even Hamiltonian H � � d2

dx2 � V�x�,
V�x� 2L� � V�x� � V��x�. Its spectrum ��H� is charac-
terized by the band structure ��H� � �E0; E1� [ . . . [
�E2n�2; E2n�1� [ �E2n;1�, E0 <E1 < . . .<E2n, which
consists of n valence bands and a conduction band, sepa-
rated by energy gaps corresponding to n prohibited bands.
The 2n� 1 singlet band-edge states of definite parity and
energies Ej, j � 0; . . . ; 2n, are given by periodic or anti-
periodic states of periods 2L or 4L. The states in the
interior of permitted bands are described by Bloch-
Floquet quasiperiodic functions, and every internal energy
level is doubly degenerate. The energy doublets are dis-
tinguished by the reflection (parity) operator R, R �x� �
 ��x�, that is a nonlocal integral of motion. On the other
hand, double degeneration of energy levels is a character-
istic feature of a quantum mechanical N � 2 supersym-
metric system. The presence of 2n� 1 singlets is an
indication of the higher order (
3) nature of the corre-

sponding hidden supersymmetry. Any finite-gap system
is characterized by a nontrivial integral of motion A2n�1

that is a self-conjugate differential operator of the form
A2n�1 � i d

2n�1

dx2n�1 � �2n�1�x�
d2n�1

dx2n�1 � . . .�0�x�. The (A2n�1,
H) is the Lax pair of the nth order Korteweg-de Vries
(KdV) equation, and the condition �A2n�1; H� � 0 defines
the stationary KdV hierarchy. This pair of commuting
operators satisfies identically the relation [8]

 A2
2n�1 � P2n�1�H�; P2n�1�H� �

Y2n
j�0

�H� Ej�; (4)

and 2n� 1 singlet states �j are the common eigenstates of
H and A2n�1 of the eigenvalues Ej and 0. The square of the
self-conjugate operator A2n�1 is positive semidefinite, and
(4) implies the described band structure of the spectrum.
Integral A2n�1 is parity-odd, fR;A2n�1g � 0. Taking into
account that �R;H� � 0 and R2 � 1, we see that here the
reflection operator plays the same role as the operator �3

for N � 2 superextended matrix system, and the operator
Z � A2n�1 can be identified as the supercharge. Define a
nonlocal odd operator ~Z � iRZ. Odd supercharges Q1 �
Z, Q2 � ~Z generate the N � 2 nonlinear supersymmetry
of order 2n� 1:

 fQa;Qbg � 2�abP2n�1�H�: (5)

Since this structure appears in the one-dimensional system
without matrix (spin) degrees of freedom, the described
nonlinear supersymmetry of order 2n� 1 for any n-gap
periodic system with parity-even Hamiltonian is identified
as a hidden bosonized supersymmetry [15–17].

Supersymmetry and band structure.—Let us return to
our finite-gap self-isospectral system. A vector space
spanned by singlet band-edge states of the subsystem
H�m;l or H�m;l is divided into two vector subspaces formed
by 2L-periodic and 2L-antiperiodic (i.e., 4L-periodic)
states. The singlet state �0 with the lowest energy E0 is
2L periodic, and the singlet state of the other edge of the
first valence band, �1, is antiperiodic. The two edge states
�2j�1 and �2j, j � 1; . . . ; m, separated by an energy gap,
have the same period [8,12]. Therefore, the space of peri-
odic singlet states has odd dimension, and the space of
antiperiodic states has nonzero even dimension. On these
two subspaces of singlet states, two irreducible nonunitary
representations of the sl�2;R� algebra are realized.
Namely, according to [12,18], the space of 2m� 1 singlet
states of the associated Lamé system with m> l can be
treated as a direct sum of two sl�2;R�-representations of
dimensionsm� l (spin j1 �

1
2 �m� l� 1�) andm� l� 1

(spin j2 �
1
2 �m� l�). The period of the states of these

subspaces is dictated by the parity of m� l. When m� l
is odd, spin-j1 (spin-j2) representation is realized on
2L-periodic (4L-periodic) states, for even m� l the peri-
odicity of spin-j1 and spin-j2 subspaces interchanges.
Making use of the two corresponding algebraization
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schemes [18], we find two commuting antidiagonal self-
conjugate integrals of motion, X and Y, where

 Y � i�Y
0 Y�m;l�x�

Y�m;l�x� 0

 !
; (6)

Y�m;l�x��
dnm�1x

cnm�l�2x
�cn2x

dnx
d
dx�

m�l�1 dnlx
cnm�lx

, Y�m;l�x��Y
�
m;l�x�K�,

�Y � 1 (0) for m� l even (odd), and X has a form similar
to (6) with X�m;l�x� � Y�m;�l�1�x�, X

�
m;l�x� � X�m;l�x� K�,

�X � 1� �Y . The order of the differential operator X,
jXj � m� l, is less than the order of Y, jYj � jXj � 2l�
1 � m� l� 1. X and Y have opposite parities ��1�m�l

(X), and ��1�m�l�1 (Y). When m� l is odd, 2L-periodic
(4L-periodic) singlet states of each subsystem are zero
modes of the integral X (Y). For even m� l the role of
the operators X and Y as annihilators of periodic and
antiperiodic edge-state interchanges. The anticommuta-
tor fX; Yg � 2Z produces a diagonal integral Z �
diag�Z�m:l; Z

�
m;l�, jZj � jXj � jYj � 2m� 1, with down,

 Z�m;l�x� � iY�m;l�x�X
�
m;l�x� � iX�m;l�x�Y

�
m;l�x�; (7)

and up, Z�m;l�x� � Z�m;l�x� K�, components, which are
the parity-odd integrals of motion annihilating all the
singlet states of the m-gap subsystems H�m;l and H�m;l
described above. Hence, Z2 � PZ�H�, where PZ�H� is a
spectral polynomial (4) of order 2m� 1 with H �
diag�H�m;l; H

�
m;l�. From the explicit form of the integrals

X, Y and Z one finds that �Z; X� � �Z; Y� � 0, and X2 �
PX�H�, Y2 � PY�H�. The polynomials PX�H� and PY�H�
factorize the spectral polynomial PZ�H�, PZ�H� �
PX�H�PY�H�, and include those factors �H � Ej� for
which Ej’s are the eigenvalues of band-edge states of
corresponding periodicity [19].

Periodic (antiperiodic) states have an even (odd) number
of nodes in the period interval. The maximal number of
nodes that can have the band-edge states annihilated by
X	m;l and Y	m;l is not more than the order of these differential
operators. When m� l is even, X annihilates m� l anti-
periodic band-edge states with 1; 1; 3; 3; . . . ; m� l� 1;
m� l� 1 nodes. The m� l� 1 periodic edge states an-
nihilated by Y have 0; 2; 2 . . . ; �m� l�; �m� l� nodes. We
find that when m� l is odd, X annihilates m� l periodic
band-edge states with 0; 2; 2; . . . ; m� l� 1; m� l� 1
nodes if m� l > 1, and one nodeless state ��0 if
m� l � 1. In the last case X is the usual first order super-
charge [20]. The operator Y annihilates m� l� 1 anti-
periodic states with 1; 1; . . . ; m� l;m� l nodes.

The picture can be summarized as follows. The band-
edge state �0 is a zero mode of the parity-odd supercharge,
i.e., of Y (X) when m� l is even (odd). The band-edge
states of the same prohibited band ‘‘attract’’ each other;
they appear as zero modes of the same supercharge. When
the number of permitted bands m� 1 is fixed, and m� l
increases in steps of 2, there appear two new band-edge

states annihilated by X, with increasing energies. Every
such pair is separated by a pair of zero modes of Y. The
highest 2�l� 1� singlet states are zero modes of Y. These
properties are illustrated on Fig. 1.

Integral Z reflects the degeneration of the states of each
subsystem, while X and Y reveal the self-isospectrality of
the composed system. As a result, it is characterized by the
fourfold degeneration of quasiperiodic states and the
double degeneration of the band-edge states.

Nonlinear superalgebra.—Besides nontrivial integrals
X, Y and Z, our system is characterized also by mutually
commuting integrals �1 � �3, �2 � R and �3 � �3R.
Any of them can be chosen as the operator � that classifies
all the integrals into bosonic and fermionic operators.
Appropriate linear combinations of physical states for
which � � �1 and �1 are identified as bosonic and fer-
mionic states. Let us choose � � �3. Eight integrals X,
�iX, Y and �iY, i � 1; 2; 3, anticommuting with � are
identified as fermionic operators. They anticommute be-
tween themselves for certain linear combinations of the
8 bosonic operators Z, �iZ, �i and H with coefficients
that are some polynomials in H. Linear combinations of
the bosonic operators J �	�1 � � i

2R�3Z�	, J �	�2 �
1
2�3Z�	 and J �	�3 � � 1

2R�	, where �	 �
1
2 �1	 �3�,

have the only nontrivial commutators

 �J �	�a ;J �	�b � � i	c�H��abcJ
�	�
c : (8)

Here a, b, c � 1, 2, 3, 	1;2 � 1, 	3 � PZ�H�. This is a
nonlinear deformation of su�2� � su�2� � u�1� � u�1�,
where the two last terms correspond to � � �3 and H.
The nonlinear algebra (8) is reminiscent of nonlinear sym-
metry algebra generated by the angular momentum and
Laplace-Runge-Lenz vector operators in the quantum
Kepler problem [21]. The complete superalgebra is iden-
tified as a nonlinear deformation of the su�2j2� superuni-
tary symmetry, in which H plays a role of the
multiplicative central charge [22].

Infinite-period limit.—In the self-isospectral system
considered here, band-edge states form energy doublets,
quasiperiodic states are organized in quadruplets. In the
infinite-period limit, corresponding to k! 1, k0 ! 0, K !
1, dn�x; k� ! 1

cosh x , the system transforms into a pair of

0 2 2 4 41 1 3 3
m − l = 4 E

0 2 2 5 51 1 3 3
m − l = 3 E

0 2 2 6 61 1 4 4
m − l = 2 E

0 3 3 7 71 1 5 5
m − l = 1 E

FIG. 1 (color online). Scheme of band structure for self-
isospectral systems with m � 4. Triangles (dots) indicate
band-edge states annihilated by X (Y), the digits below mean
their node numbers. The states with even (odd) number of nodes
are periodic (antiperiodic).
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reflectionless Pöschl-Teller systems given by potentials
V	m;l � �C

	cosh�2x� c, C� � Cl, C� � Cm. In this
limit the spectral polynomial degenerates [16]. The quasi-
periodic states of the conduction band reduce to the scat-
tering states, supersymmetric doublet of its band-edge
reduces to a doublet of the lowest states of the scattering
sector. In a shifted subsystem H�m;l, m� l lower valence
bands disappear, while the rest of them in both subsystems
shrink to the bound states. The resulting system is charac-
terized by m� l singlet and l doublet bound states, and by
a doublet of the lowest states of the scattering sector. The
rest of the scattering states is organized in energy quad-
ruplets. This unusual picture of supersymmetry breaking,
illustrated on Fig. 2, is related to the nonlinear nature of
self-isospectral supersymmetry.

Conclusion.—In the model investigated here the non-
linear self-isospectral supersymmetry originates from:
(i) the separability of the singlet band-edge states of both
subsystems into two nonempty subspaces of periodic and
antiperiodic states, and (ii) the related factorization of the
higher order Lax pair operator of the associated stationary
KdV hierarchy. The mutually commuting integrals X and Y
are the annihilators of the band-edge states of definite
periodicity. They factorize the integral Z that annihilates
all the band-edge states. The unusual nonlinear supersym-
metry generated by these nontrivial integrals together with
integral �3 and parity operator R, reveals the band struc-
ture of the system and all its peculiarities in the same way
as a the nonlinear symmetry associated with the Laplace-
Runge-Lenz vector reflects specific properties of the hy-
drogen atom spectrum [21].
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