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A generic Fourier-space approach to solve the self-consistent field theory of block copolymers is
developed. This approach is based on the fact that, for any computational box with periodic boundary
conditions, all spatially varying functions are spanned by the Fourier series determined by the size and
shape of the box. The method reproduces all known diblock copolymer phases. The application of this
method to a model ‘‘frustrated’’ triblock copolymer leads to a phase diagram with a number of new
phases. Furthermore, the capability of the method to reproduce experimentally observed structures is
demonstrated using the knitting pattern of triblock copolymers.
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In recent years, block copolymers have become a para-
digm for the study of self-assembly of soft matter. In
particular, the rich and fascinating ordered phases of block
copolymer melts and solutions have received tremendous
attention both experimentally and theoretically [1,2].
Theoretical studies have focused on the development of
frameworks which are capable of relating molecular archi-
tecture and composition to equilibrium ordered phases. It
has been well established that the self-consistent field
theory (SCFT) provides a particularly successful frame-
work for the study of the phase behavior of block copoly-
mers [3,4]. A comprehensive treaty on SCFT is given in a
recent monograph by Fredrickson [5].

From a mathematical point of view, finding the solutions
of the SCFT presents a complex and challenging problem.
One successful approach is to solve the SCFT equations
using numerical techniques. The first exact numerical so-
lutions of three-dimensional ordered diblock copolymer
phases were obtained using a spectral method proposed
by Matsen and Schick in 1994 [6]. In its most general form,
the spectral method provides a complete description of the
SCFT equations, which allows high precision calculations
of free energies and phase diagrams. For practical reasons,
most previous calculations assumed that the symmetry of
the ordered phases is known a priori [7]. Recently, SCFT
calculation using the spectrum method reveals a new con-
tinuous phase with space group Fddd (the O70 phase) in
diblock copolymers [8] and was indeed observed later in a
poly(styrene-b-isoprene) melt [9]. Parallel to the spectrum
methods, real-space numerical methods to solve the SCFT
equations have been developed [5]. Noticeable efforts
along this direction include the work of Drolet and
Fredrickson [10] and Bohbot-Raviv and Wang [11].
Drolet and Fredrickson proposed a combinatorial screen-
ing method, which involves a direct implementation of

SCFT in real space in an adaptive arbitrary cell. Later, a
split-step method for solving the diffusion equation was
introduced by Rasmussen and Kalosakas which improves
the efficiency of the calculations [12].

In this Letter, we propose a generic spectral approach for
the discovery of complex ordered structures of block co-
polymers. Our approach is based on the observation that, in
any computational box with periodic boundary conditions,
all spatially varying functions are periodic functions whose
period is dictated by the computational box. Therefore,
these functions can be expanded as Fourier series, and
SCFT equations can be cast in terms of the expansion co-
efficients. The solutions of the SCFT equations can then be
obtained using any of the available numerical techniques
[5]. The essence of this new approach is to use the full
power of the spectral method, in which the symmetry of the
ordered phases is not presumed. Furthermore, our Fourier-
space method has the advantage of identifying new com-
plex structures, especially continuous structures, more
easily and definitively. In what follows, we choose linear
multiblock copolymers to demonstrate our method,
although the approach is very general and can be easily
extended to any molecular architecture.

We consider n linear multiblock copolymers, modeled
as flexible Gaussian chains with a degree of polymerization
N, in a volume V. Within the SCFT, the many-chain prob-
lem is reduced to that of an independent chain subject to
mean fields due to the presence of the other chains [4,5].
The fundamental quantity is the polymer segment proba-
bility distribution function q�r; s�, representing the proba-
bility of finding segment s at position r. This distribution
function satisfies a modified diffusion equation @q�r; s�=
@s � �b2=6�r2q�r; s� �!�r; s�q�r; s�, with the initial con-
dition q�r; 0� � 1. Here b is a statistical segment length of
the polymer (assumed to be the same for all blocks), and
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!�r; s� is the mean field which is defined as!��r�when the
s is on the � block. The partition function of a single chain
subject to the mean field !�r; s� can be written as Q �R
drq�r; N�. The free energy per chain of the system is

given by
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where ��� are the Flory-Huggins parameters between
species � and �,  ��r� is the concentration distribution
of the component �, and ��r� is a pressure field that
ensures the local incompressibility. Minimizing the free
energy (i.e., taking the mean-field approximation) leads to
the SCFT equations [4,5], which can be solved by either
real- or reciprocal-space methods.

In the spectral method, all spatially varying functions are
expanded in terms of a set of basis functions [4,6]. In most
previous studies, the basis functions are generated using
the symmetry of some presumed ordered phases. In the
current approach, a generic set of basis functions is gen-
erated by the computation box; thus, a spatially varying
function is expanded in the form g�r� �

P
Gg�G�e

�iG�r,
where the wave vectors G are determined by the size and
shape of the box. In the case of a cubic box with length D,
the wave vectors are Gi � �2�=D��hi; ki; li�, where
hi; ki; li � 0;�1;�2; . . . . With this generic set of basis
functions, in principle the symmetry of the ordered phases
will emerge from the solutions. In what follows, we restrict
to centrosymmetric phases for simplicity, and the expan-
sion takes the form
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The basis functions fi�r� �
���
2
p

cos��Gi � r� can be in-
dexed by i � 1; 2; 3; . . . such that each set of �h; k; l� cor-
responds to one i. These basis functions are orthonormal
eigenfunctions of the Laplace operator satisfying
r2fi�r� � ��iD�2fi�r� and V�1

R
drfi�r�fj�r� � �ij.

The eigenvalues �i � 4�2�h2
i � l

2
i � k

2
i � form an ascend-

ing series, beginning with �1 � 0 and f1�r� � 1. With
these definitions, the SCFT equations can be cast in terms
of the expansion coefficients. A number of numerical
methods are available to solve the SCFT equations [5]. In
what follows, we use a simple numerical procedure similar
to that of Matsen and Schick [6,13]. For a multiblock
copolymer with fixed chain length N, compositions f�,
and Flory-Huggins parameters ���, the SCFT equations
can be solved to obtain a set of solutions corresponding to
the minima of the free energy functional. The amplitudes

 �;i are then used to reconstruct the concentration distri-
bution of the component �. The space group of the struc-
ture can be determined by the wave vectors Gi �
�2�=D��hi; ki; li� that correspond to nonzero coefficients
 �;i. These reciprocal vectors can be mapped to those
corresponding to the Bragg reflections of the morphology.
A comparison of these wave vectors with the crystallog-
raphy table, for example, Ref. [14], can be used to identify
the space group and lattice parameters.

To test the validity of our new approach, we first applied
it to AB diblock copolymers. Up to 294 basis functions
were used, and the concentration and (self-consistent) field
accuracy was calculated to 10�6 (for �N < 25 and 0:1<
f 
 0:5). A large number of ordered structures emerge
from the solutions. In addition to the well-known four
equilibrium stable phases (bcc spheres, hexagonal cylin-
ders, gyroids, and lamellae), the solutions include a num-
ber of additional structures: an ordered network phase with
space group symmetry Fddd (the O70 phase), a P63mmc
or R�3m perforated lamellae, an Pn3m double diamond,
and a P4mm phase (which is a network of fourfold con-
nected struts of a minority component forming a tetragonal
lattice T99). We have confirmed that the generic spectrum
method leads to equilibrated lamella, cylinder, gyroid,O70,
and sphere phases at the compositions and �AB values
consistent with the Matsen-Schick [6] and Tyler-Morse
[8] phase diagrams.

In order to demonstrate the predictive power of the
new approach, we applied it to linear ABC triblock co-
polymers. However, exploring their high-dimensional
phase space thoroughly is a formidable task [15–17].
Instead, we focus on the so-called frustrated systems
[17], in which the interaction between the two end blocks
is the smallest among the three interactions, i.e., �AC �
�AB � �BC. Such systems include poly(styrene-
b-butadiene-b-methyl methacrylate) (PS-PB-PMMA)
[18], poly(styrene-b-isoprene-b-methyl methacrylate)
[19], and poly(styrene-b-butadiene-b-"-caprolactone)
[20]. To simplify the calculation, we considered an ideal-
ized model with �AB � �BC and equal statistical Kuhn
lengths bA � bB � bC. For the set of interaction parame-
ters �ABN � �BCN � 35 and �ACN � 15, a large number
of ordered phases emerge from our calculations (Fig. 1).
These structures can be classified into several groups:
(i) equilibrium diblock copolymer phases, which are a
lamellar (L), gyroid (G), cylinder (C), sphere (S), or dis-
ordered phase (D); (ii) core-shell analogs of the G, C, and
S phases found in diblock copolymers, in which the
middle-block domain forms a shell around the network
of one of the end blocks and the other block forms the
matrix; (iii) alternating versions of the L, G, C, and S
phases, in which the end blocks organize in alternating sub-
lattices and the middle block forms the matrix; (iv) pos-
sible combination of the L, G, C, and S phases, including
lamellae with cylinders at the interfaces [L� C�I�], lamel-
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lae with cylinders inside a domain [L� C�II�], lamellae
with spheres at the interfaces [L� S�I�], lamellae with
spheres inside a domain [L� S�II�], gyroid with spheres
at the interfaces [G� S�I�], and gyroid with spheres inside
a domain [G� S�II�]; (v) other decorated phases, such as
helical rings on cylinders (C� HEL); (vi) metastable
phases such as hexagonally perforated lamellae (HPL).

Figure 2 shows the calculated phase diagrams for the
triblock copolymer with �ABN � �BCN � 35 and
�ACN � 15. The increment of the volume fractions fA,
fB, and fC in the phase diagram is 0.025. The phase
diagram is symmetric about the line fA � fC, due to the
use of the symmetric interaction parameters �AB � �BC. A
notable feature is that large area of lamellar (L) region
exists in the center and near the middle of each binary edge
of the phase triangle, which is separated into subregions by
decorated phases such as L� S�II� near the AB or BC edge
and L� C�I� and L� S�I� near the AC edge. In the sub-
region at the center of the phase triangle, A, B, and C form
well segregated layers—‘‘three-color’’ structure (L3)—
while a ‘‘two-color’’ structure (L2) in which only two
layers can be observed along each of the edges. The region
of the G phase near the B corner, which includes the
alternating G phase (GA) near the isopleth fA � fC and
the core-shell version (GCS) near the AB or BC edge, is
separated by the G� S phase, in which the sphere is
formed by one of the end block. Near the A or C corner,

a C� HEL phase is surrounded by the G phase, in which
one of the end block forms the cylinder and the middle
block forms the helix that winds the cylinder. The C and S
phases form continuous arcs across the three corners of the
triangle. In the A-rich corner, both phases consist of a C
core coated by a B shell immersed in an A matrix, while in
the C-rich corner the order is reversed (with A core/B
shell/C matrix). In the B-rich corner, alternating C and S
phases form near the isopleth fA � fC, while near the AB
and BC edges core-shell versions of the C and S phases are

FIG. 2 (color). Phase diagram of a model linear ABC triblock
copolymer with �ABN � �BCN � 35 and �ACN � 15. Dotted
lines are phase boundaries that are not determined exactly.

FIG. 1 (color). Ordered phases obtained using the generic
spectrum approach for model linear ABC triblock copolymers
with �ABN � �BCN � 35 and �ACN � 15. Blue, green, and red
represent domains rich in A, B, and C blocks, respectively.

FIG. 3 (color). Knitting pattern obtained for the linear ABC
triblock copolymer with �ABN � 27, �BCN � 59, �ACN �
11:5, fA � 0:36, fB � 0:31, and fC � 0:33. The statistical seg-
ment lengths are bA � 0:61 nm, bB � 0:68 nm, and bC �
0:65 nm. Blue, green, and red represent domains rich in A, B,
and C blocks, respectively.
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stable. The phase triangle qualitatively agrees with the
phase behavior observed for PS-PB-PMMA triblocks re-
ported by Abetz and Goldacker [21]. Moreover, the calcu-
lated phase sequence L3 ! L� C�I� ! L� S�I� ! L2

near the isopleth fA � fC with decreasing fB follows the
experiment exactly.

As another application of the current approach, we
studied a model system for polystyrene-b-poly(ethylene-
co-butylene)-b-poly(methyl methacrylate) (SEBM) tri-
block copolymers [22], which exhibits a fascinating two-
dimension ‘‘knitting pattern’’ (KP) morphology. The KP
phase was observed in a S35EB27M38 sample with a num-
ber averaged molecular weight 1:22
 105 and volume
fractions fPS � 0:36, fPEB � 0:31, and fPMMA � 0:33.
The statistical segment lengths are bA � 0:61 nm, bB �
0:68 nm, and bC � 0:65 nm (PS, PEB, and PMMA are
referred to as A, B, and C, respectively), with a reference
monomer volume of 0:145 nm3 [23]. Consistent with the
Hildebrandt approximation, we take �ABN � 27, �BCN �
59, and �ACN � 11:5 [18]. The calculation is carried out in
2D using 160 basis functions. It is observed that the KP
structure is sensitive to the block copolymer parameters.
For the chosen parameters, an equilibrium KP morphology
(Fig. 3) is predicted.

In summary, we have developed a generic approach for
the discovery of complex ordered phases of block copoly-
mers. The approach is based on a generic Fourier-space
method. The essential idea is to expand all of the spatial
varying functions into a generic set of basis functions. The
symmetry of the equilibrium phases emerges from the
solutions. The space group of the ordered phases can be
identified by mapping to scattering vectors. Application of
the generic approach to diblock copolymers reproduces all
known diblock phases. A model frustrated ABC triblock
copolymer is chosen to further demonstrate its predictive
power. A phase diagram of the model ABC triblock co-
polymer is constructed. A number of new phases are
predicted for the triblock copolymers. Finally, the method
is applied to a realistic model of a SEBM triblock copoly-
mer, in which the fascinating KP phase was predicted to
occur at the parameters that mostly match the experiment
conditions. We believe that the generic spectral approach is
a powerful method to predict new ordered phases for
complex block copolymers. These ordered structures can
be used as input for the more accurate and efficient real-
space [5] or reciprocal-space [6] methods.

We thank the financial support from the National Basic
Research Program of China (Grant No. 2005CB623800)
and National Natural Science Foundation of China (Grants
No. 20625413 and No. 20221402). A.-C. S. acknowledges
supports from the Natural Science and Engineering
Research Council (NSERC) of Canada.

*fengqiu@fudan.edu.cn

†shi@mcmaster.ca
[1] F. S. Bates and G. H. Fredrickson, Phys. Today 52, No. 2,

32 (1999).
[2] I. W. Hamley, The Physics of Block Copolymers (Oxford

University Press, Oxford, 1998).
[3] M. W. Matsen and F. S. Bates, Macromolecules 29, 1091

(1996); M. W. Matsen, J. Phys. Condens. Matter 14, R21
(2002).

[4] A.-C. Shi, in Developments in Block Copolymer Science
and Technology, edited by I. Hamley (Wiley, New York,
2004), p. 265.

[5] G. H. Fredrickson, The Equilibrium Theory of Inhomoge-
neous Polymers (Oxford University Press, Oxford, 2006).

[6] M. W. Matsen and M. Schick, Phys. Rev. Lett. 72, 2660
(1994).

[7] Although it is commonly stated in the literature that the
Matsen and Schick method requires a priori symmetry as
input, this statement is not correct. General basis functions
have been used by Matsen in his study of epitaxial phase
transitions [Phys. Rev. Lett. 80, 4470 (1998)]. Laradji
et al. have also used a general Fourier expansion to
examine the stability of block copolymer phases [Phys.
Rev. Lett. 78, 2577 (1997)].

[8] C. A. Tyler and D. C. Morse, Phys. Rev. Lett. 94, 208302
(2005).

[9] M. Takenaka et al., Macromolecules 40, 4399 (2007).
[10] F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 83, 4317

(1999).
[11] Y. Bohbot-Raviv and Z.-G. Wang, Phys. Rev. Lett. 85,

3428 (2000).
[12] K. Ø. Rasmussen and G. Kalosakas, J. Polym. Sci., Part B:

Polym. Phys. 40, 1777 (2002).
[13] Since our purpose is to demonstrate the capability of the

current approach, the simplest numerical method is used.
Furthermore, for the discovery of potential ordered phases,
very accurate numerical solutions are not needed. In a case
where highly accurate solutions are required, the ordered
phases discovered using the current approach can be used
as initial input to the more sophisticated methods.

[14] N. F. M. Henry and K. Lonsdale, International Tables
for X-Ray Crystallography (Kynoch Press, Birmingham,
1969).

[15] T. S. Bailey, C. M. Hardy, T. H. Epps III, and F. S. Bates,
Macromolecules 35, 7007 (2002).

[16] H. Nakazawa and T. Ohta, Macromolecules 26, 5503
(1993); W. Zheng and Z.-G. Wang, Macromolecules 28,
7215 (1995); I. Y. Erukhimovich, Eur. Phys. J. E 18, 383
(2005).

[17] C. A. Tyler, J. Qin, F. S. Bates, and D. C. Morse, Macro-
molecules 40, 4654 (2007).

[18] R. Stadler et al., Macromolecules 28, 3080 (1995).
[19] C. Koulic and R. Jerome, Macromolecules 37, 888 (2004).
[20] V. Balsamo, F. V. Glydenfeldt, and R. Stadler, Macro-

molecules 32, 1226 (1999).
[21] V. Abetz and T. Goldacker, Macromol. Rapid Commun.

21, 16 (2000).
[22] U. Breiner, U. Krappe, and E. L. Thomas et al., Macro-

molecules 31, 135 (1998).
[23] E. W. Cochran, D. C. Morse, and F. S. Bates, Macro-

molecules 36, 782 (2003).

PRL 101, 028301 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 JULY 2008

028301-4


