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A phase-field approach for quantitative simulations of grain growth in anisotropic systems is intro-
duced, together with a new methodology to derive appropriate model parameters that reproduce given
misorientation and inclination dependent grain boundary energy and mobility in the simulations. The
proposed model formulation and parameter choice guarantee a constant diffuse interface width and
consequently give high controllability of the accuracy in grain growth simulations.
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The phase-field method has a reputation to be very
general and applicable to complex microstructural phe-
nomena. Besides many other applications, it has proven
to be extremely suitable for the study of grain growth
related phenomena in 2D [1–3] and 3D [4–6]. For given
grain boundary energy and mobility, the simulations pre-
dict the evolution of a grain structure and its macroscopic
parameters, such as the grain size and grain orientation
distributions [7]. It is, however, still a great challenge to
derive reliable quantitative conclusions from the simula-
tions, especially for anisotropic systems. Atomistic mo-
lecular dynamics studies have recently shown that grain
boundary properties vary considerably with misorientation
and boundary inclination [8,9]. Furthermore, important
mesoscale processes, such as recrystallazition and abnor-
mal grain growth, are controlled by these variations in
grain boundary properties [10–12]. An improved phase-
field formulation for grain growth is thus required.

Generally, three phase-field approaches exist for simu-
lating the evolution of anisotropic polycrystalline struc-
tures. In the Warren, Kobayashi, and Carter approach [13],
3 continuous orientation fields, or 4 quaternions [14], are
used to represent variations in local orientation, in combi-
nation with a phase field, representing the local crystallin-
ity. The free energy functional is formulated so that it
results in a Read-Shockley dependence of the grain bound-
ary energy at low misorientations. This model has been
applied to polycrystalline solidification [15] and for the
study of structural transitions for stationary grain bounda-
ries [16]. It is, however, less suitable for long-term coars-
ening [17]. Furthermore, little attention has been given to
grain boundary energies with cusps at high-angle misor-
ientations. In the multiphase-field [5,18] and continuum-
field approach [1,2], different grain orientations are repre-
sented by a large set of phase fields. In the multiphase-field
approach, the phase-field variables are interpreted as frac-
tions for which the sum equals 1 at each position. In
principle, the model can treat arbitrary misorientation
and inclination dependence. There exist straightforward

relations between the model parameters and grain bound-
ary energy and mobility for 2-grain structures. For multi-
grain structures, however, extra phase fields (other than
those representing the neighboring grains), so-called
‘‘ghost’’ fields, contribute at grain boundaries. Conse-
quently, it is difficult to control the grain boundary prop-
erties in a quantitative way. The ghost fields may be sup-
pressed by using alternative free energy functionals
[19,20], however, not completely and for arbitrarily large
variations in grain boundary energy. In the continuum-field
approach, there is no restriction on the local values of the
phase fields, which makes it more easy to avoid ghost fields
at interfaces. Moreover, different from the other models,
the inclination dependence of the grain boundary energy is
introduced through both the homogeneous and gradient
contributions in the free energy functional [2,21]. This
degree of freedom can be used to keep the diffuse grain
boundary width constant for varying grain boundary prop-
erties, as variations in grain boundary width are inefficient
from a computational point of view and might introduce
nonphysical effects [22]. (In phase-field simulations for
grain growth, the grain boundary width is usually treated
as a model parameter and chosen based on computational
considerations, a so-called ‘‘thin-interface’’ approach.)
However, the proposed methodology to determine the
model parameters is very approximate. They assume that
the diffuse grain boundary width is proportional with����������������������

1=��f�max

p
and grain boundary energy with

�����������������
��f�max

p
,

where ��f�max is defined as ‘‘the maximum height of the
barrier in the homogeneous free energy f between two
degenerate minima,’’ although it is not specified how this
value is related to the model parameters. In fact, as we
show in this Letter and in more detail in [23], the grain
boundary energy and thickness are related to the free
energy density in a more complicated way. It is also not
described how to treat faceted boundaries.

The purpose of this Letter is to introduce a fully quanti-
tative phase-field approach for polycrystalline structures
with arbitrary anisotropy, and give a procedure to deter-
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mine its model parameters. We start from the continuum-
field formulation of Kazaryan et al. [2,21]. A grain struc-
ture is represented by a large set of independent phase
fields �1�r; t�; �2�r; t�; . . . ; �i�r; t�; . . .�p�r; t�. Their evo-
lution is given by Ginzburg-Landau equations:

 

@�i�r; t�
@t

� �L��;��
�F��1; �2; . . . ; �p�

��i�r; t�
; (1)

where we propose a free energy functional F
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For � > 0:5, f0 has localized minima at ��1; . . . ; �p� �
�1; 0; . . . ; 0�; �0; 1; 0; . . . ; 0�; . . . ; �0; . . . ; 0; 1�, representing
discrete grain orientations (we only consider positive val-
ues of the phase fields). Because of the cross products,
ghost fields always result in an increase of the local free
energy and are accordingly unstable. Therefore, expres-
sions for the grain boundary properties derived for 2-grain
structures remain valid for individual grain boundaries in
polycrystalline structures, except for very small grains.
The kinetic parameter L and the parameters � and � in
the free energy are a function of the misorientation �
between neighboring grains and the grain boundary incli-
nation �:
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with

 �i;j �
r�i �r�j
jr�i �r�jj

(5)

the inclination of the boundary between grains with ori-
entations i and j. The parameterm is constant. In general, �
is a vector with 3 independent coordinates, and the �i;j are
vectors with 2 independent coordinates. At a boundary
between grains i and j, ���;�� � �i;j��i;j�, ���;�� �
�i;j��i;j�, and L��;�� � Li;j��i;j�, since only �i and �j
differ from zero. The magnitude and inclination depen-
dence of the grain boundary energy and mobility can thus
be specified for p� 1 discrete misorientations. Since
structural relaxations with respect to misorientation are

not relevant on the mesoscale, the misorientation depen-
dence is treated in a discrete way and considered to be fixed
for a given grain configuration [the �-dependence in
Eq. (4) is omitted when calculating the driving forces in
Eq. (1)]. On the other hand, the model parameters are
continuous functions of the inclination, to describe the
reorientation of grain boundaries towards a low energy
inclination, occurring on the mesoscale.

In [23], we study how the model parameters affect the
free energy density f0 and the shape of the equilibrium
phase field profiles across grain boundaries. Furthermore,
we derive expressions for the grain boundary energy
�gb��;�� and mobility �gb��;�� as a function of the
model parameters, giving

 �gb��;�� � g����;���
��������������������
���;��m

q
; (6)

 �gb��;���gb��;�� � ���;��L��;��; (7)

where g��� has to be evaluated numerically. We also define
a measure ‘gb for the grain boundary width, which is based
on the maximum gradients of the phase fields:

 ‘gb �

�������������������������������������
���;��

mf0;interf����;���

s
: (8)

f0;interf��� refers to the value of f0 at the middle of the
diffuse region, where the 2 phase fields cross. This quantity
can be used as a parameter in criteria for the numerical
stability and accuracy of the simulation results. In Fig. 1,
numerically evaluated function values for g��� and
f0;interf��� are compared with f0;saddle���, the value of f0
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FIG. 1 (color online). Numerically calculated function values

for g��� � �gb=
�������
�m
p

and 4=3
������������������������
�f0;interf ����

q
, compared with the

analytical function 4=3
�������������������������
�f0;saddle����

q
, which is the value of f0 at

its saddle point. The relative deviation between g��� and

4=3
�������������������������
�f0;saddle����

q
is also plotted as a function of �.
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at its saddle point, for which an analytical expression

exists. It is shown in [23] that for � � 1:5, g��� �

4=3
���������������������
f0;interf���

q
� 4=3

����������������������
f0;saddle���

q
. In general, however,

there is no simple relation between the three functions.
The approach of Kazaryan et al. [2] is accordingly not
quantitative, especially for large variations in grain bound-
ary energy. Using relations (6)–(8), the model parameters
can be calculated iteratively for discrete values �gb;k and
�gb;k, and a constant grain boundary width ‘gb, as de-
scribed in [23]. To enhance evaluation of the expressions,
polynomials ~g��� and ~f0��� were fitted through the nu-
merically calculated values for g��� and f0���.

To formulate the inclination dependence, we assume
that the grain boundary energy and mobility for different
misorientations k have the form �gb;k��� � ��gb;kf�;k���
and �gb;k��� � ��gb;kf�;k���, with � measured with re-
spect to the crystal lattice of the adjacent grains. For the
model parameters, we take the form
 

�i;j��i;j� � ��kf�;k���; (9a)

�i;j��i;j� � f�;k� ��k;��; (9b)

Li;j��i;j� � �LkfL;k���; (9c)

where k is the misorientation between grains i and j and
�i;j defined with respect to the system [Eq. (5)] and related
to �i;j through the orientations i and j. For weak inclina-
tion dependence of the grain boundary energy (�gb �

d2�gb=d�2 > 0; 8 �), f�;k��� is taken equal to f�;k���,
fL;k��� � f�;k��� and f�;k� ��k;�� � g�1�x� with
g2��i;j� � g2� ��k�f�;k���. Values for m, ��k, ��k, and �Lk
are calculated from relations (6)–(8), using the given
��gb;k, ��gb;k and an appropriate ‘gb. For strong inclination
dependence, only a limited number of narrow inclination
ranges located around some extrema of the inclination

dependent factors f�;k��� and f�;k��� dominate the mor-
phology. Then, it is more convenient to calculate first
discrete model parameter values �l, �l, Ll and m for the
grain boundary energies �gb;l and mobilities �gb;l at incli-
nations l for which f�;k��k� or f�;k��k� are extremal, and
fixed ‘gb. Next, f�;k� ��k;�� � ��kf0�;k��� is taken and
f�;k��� and f�;k��� must be functions with cusps and
extrema at the same inclinations as f�;k���. Furthermore,
��k and ��k and the coefficients in f�;k��� and f�;k��� are
calculated so that ��kf�;k��l� and ��kf0�;k��l� equal the
formerly calculated �l and �l. A similar approach is ap-
plied for the kinetic parameter. Intermediate strengths of
inclination dependence may be treated by both approaches.

As a first illustration, we determine the model parame-
ters for a system with Read-Shockley misorientation de-
pendence of the grain boundary energy [12] for low-angle
misorientations, and the �gb constant for high-angle mi-
sorientations (see Fig. 2). A fourfold symmetry is assumed.
The orientations within one quadrant are discretized with
an interspacing of 1.5� and assigned to 60 order parame-
ters. The misorientation between grains with orientations i
and j is calculated as � � 1:5��jj� ij� for jj� ij � 30 or
� � �90� � 1:5��jj� ij� for jj� ij � 30. These simu-
lations are representative for the evolution of a poly-
crystalline film with fiber texture. The grain boundary
mobility is taken constant, �gb � 1	 10�6 m2 s=kg, and
the grain boundary width is taken ‘gb � 1:33	 10�6 m.
Calculation of the model parameters gives m �
2:25	 106 J=m3, L � 1 m 
 s=kg, and values for �i;j and
�i;j as shown in Fig. 2. If there are cusps in the grain
boundary energy at high-angle misorientations, the same
procedure is used to calculate the model parameters. A
standard explicit finite difference discretization with grid
spacing �x � 0:2	 10�6 m and time step �t � 0:03 s
was used for the numerical implementation. The images
in Fig. 3 show that the model is able to distinguish between
different grain boundary energies and different triple junc-
tion angles. Simulations for individual triple junction ge-
ometries indicate that the accuracy of the simulations is

gb m m m( )= (| |/ )(1-ln(| |/ ))

with m

m

max
-6

gb

max

/ max

/ max

/
,

/
xa

m
xa

m

a)

b)

×

FIG. 2 (color online). (a) Grain boundary energy as a function
of misorientation and (b) the corresponding values for the model
parameters � and � used for the simulations depicted in Fig. 3.

FIG. 3 (color online). Simulation images at times 202.5 and
892.5 sec, for the conditions specified in the text and in Fig. 2,
and a system size 100	 100 �m2. Grain boundaries with mi-
sorientation �1:5� are in white, those with misorientation �3�

in gray.
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controlled by ‘gb=�x (for ‘gb < 5R) [23]. Moreover, larger
variations in grain boundary energy require a higher reso-
lution for the same accuracy. For ‘gb=�x � 6:65, the error
on the grain boundary curvatures is below 2% for junctions
with all angles between approximately 110� and 130�,
below 5% when angles are between 90� and 140�, and
between 5% and 10% if 1 of the angles is between 75� and
90� or between 140� and 143�. For ‘gb=�x � 13:3, the
error is reduced with 1%–3% for the two latter situations.
For Read-Shockley misorientation dependence, a finer dis-
cretization of the grain orientations is thus only useful if
‘gb=�x is increased as well. A similar resolution depen-
dent restriction was observed for Monte Carlo simulations
[11]; however, the phase-field method gives more flexibil-
ity to improve the numerical resolution in an efficient way,
also in 3D, e.g., by a thin-interface approach, adaptive
meshing and sparse data structures.

As a second illustration, we simulate the curvature
driven shrinkage of an initially circular grain, using grain
boundary energies with different inclination dependence.
The contour lines at different values of the phase field,
representing the shrinking grain in Fig. 4, show that the
grain boundary width is indeed constant.

To conclude, we have introduced a modified phase-field
model, and a procedure to determine its model parameters,
for grain growth. The methodology allows us to account
correctly for grain boundary mobility and stiffness data, for
example, obtained from molecular dynamics simulations,

in mesoscale simulations, and gives high controllability of
the numerical accuracy.
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FIG. 4. Contour lines for �1 � 0:1, 0.5, and 0.9 at 3 different
time steps, obtained from 2D simulations of a shrinking grain
using different inclination dependent factors [24–26] for the
grain boundary energy. The polar plot of the grain boundary
energy is also shown. The simulations are for ��gb � 0:25 J=m2,
�gb � 1	 10�6 m2 s=kg, ‘gb � 1:33	 10�6 m, �x � 0:1	
10�6 m, �t � 0:002 s, and system size 50	 50 �m2.
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