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We show that the geometric scaling of the total virtual photon-proton cross section data can be
explained using standard linear Dokshitzer-Gribov-Altarelli-Parisi perturbative evolution with generic
boundary conditions in a wide kinematic region. This allows us to single out the region where geometric
scaling may provide evidence for parton saturation.
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The observation of geometric scaling [1] in ep deep
inelastic scattering (DIS) data has attracted considerable
interest because it is widely interpreted as evidence for
parton recombination and saturation [2]. Geometric scaling
(GS) is the statement that the total ��p cross section ��

�p
tot ,

which is a priori a function of two independent variables—
the photon virtuality Q2 and the Bjorken variable x—only
depends on the variable � � Q2=Q2

s�x�, where the so-
called saturation scale Q2

s�x� depends nontrivially on x,
with dimensions given by a fixed reference scale Q2

0.
The presence of recombination effects in the HERA data

would have dramatic effects, because these data dominate
the determination of parton distributions, which are neces-
sary for the computation of LHC processes [3]. Available
parton fits do not include these effects and would thus fail
to provide reliable predictions at the LHC. It is the purpose
of this Letter to ascertain whether this is actually the case,
and, more generally, in which kinematic region GS may or
may not provide evidence for saturation.

Evidence for GS is provided by the scaling plot of the
reduced cross section ��

�p
tot vs the scaling variable � (see

Fig. 1),

 ln� � t� ts; (1)

where t � lnQ2=Q2
0, and the saturation scale ts � lnQ

2
s �x�
Q2

0

was originally [1] chosen as ts � ��, and more recently
[2,4] also as ts � �

���
�
p

, with � � ln�1=x�. To test whether
this behavior is compatible with standard Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) perturbative
evolution, in Figs. 2 and 3 we show a scaling plot of
��

�p
tot computed using the double asymptotic scaling

(DAS) approximation to leading-order (LO) DGLAP evo-
lution [5] of a constant boundary condition. Namely, we
take

 ��
�p

tot �
4�2�em
Q2 F2�x; t� �

4�2�em
Q2

�
�
G�x; t�; (2)

 G��; t� �
1����������

4��
p exp

�
2��� �2 ln

�
t� �t0

�t0

��
; (3)

where � �
���������������
� lnt�

�t0
�t0

q
, � �

�����������������
�= lnt�

�t0
�t0

q
, �t0 � ln

Q2
0

�2
QCD

, and

	0 � 11� 2
3nf, � �

�����
12
	0

q
.

The DAS approximation to LO DGLAP evolution is
quite accurate in a wide kinematic region Q2 *

10 GeV2, x & 0:1, based on approximating the LO anoma-
lous dimension as

 �DAS��s; N� � �s
3

�

�
1

N
� 1

�
: (4)

We take it as representative of a situation where saturation
is certainly absent. The GS properties of the cross section
Eq. (2) are compared to those of the data by plotting both
vs �, with the best-fit phenomenological values of Ref. [4]
� � 0:321 (Fig. 2) or � � 1:621 (Fig. 3), over the grid of
(x,Q2) values shown in Fig. 1. The data points are obtained
from a very accurate neural network interpolation to world
DIS data [6]. The kinematical region is that for which
experimental data are available.

Figures 2 and 3 show that for � * 1 (Fig. 2) or � * 0:1
(Fig. 3) the GS properties of the DAS solution are almost as
good as those of the data, and become as good or better
with a minor improvement, to be discussed below. It fol-
lows that saturation is by no means necessary for geometric
scaling. This may seem surprising given that the DAS
solution Eq. (2) appears to violate GS. However, we now
show that approximate GS is in fact a general property of
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FIG. 1 (color online). Data sample. Lines of constant � are
shown, with ln� � t� �� (dashed) and ln� � t� �

���
�
p

(solid)
and Q2

0 � 1 GeV2.
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solutions to the DGLAP equation. It is already known that
if GS is imposed as a boundary condition at some low
scale, it is preserved by both Balitsky-Fadin-Kuraev-
Lipatov (BFKL) [2] or DGLAP [7] linear evolution to
higher scales. Here, we show instead that GS is generated
by linear DGLAP evolution itself, irrespective of the
choice of boundary condition.

Consider first the fixed-coupling case. The general
DGLAP solution for any anomalous dimension � is

 G�t; �� �
Z c�i1

c�i1

dN
2�i

G0�N� exp	N�� ���s; N�t
; (5)

where G0�N� is a suitable boundary condition. For large
enough �, the integral can be evaluated in the saddle point
approximation. The saddle condition is

 

d
dN

���s; N�
��������N�N0

� �
�
t
: (6)

The cross section becomes

 ��
�p

tot ��; t� � e�	N0�����s;N0��1��t=��
 � exp
�
�f
�
t
�

��
(7)

up to terms which are not enhanced as �! 1.
Geometric scaling follows expanding t about the satu-

ration scale Eq. (1) ts � ��:

 ��
�p

tot ��; t� � exp	f����� f0����t� ts� � . . .
: (8)

If we choose a value of � such that f��� � 0 the cross
section Eq. (8) manifestly displays geometric scaling. It is

apparent from Eq. (7) that this value exists if � is the
DGLAP anomalous dimension, either at fixed perturbative
order or resummed at small x using the BFKL formalism,
or indeed for any reasonable shape of �.

This argument is in fact quite close to that of Ref. [2],
due to the fact that the DGLAP solution can equivalently
be written in ‘‘dual’’ form [8] as

 G�t; �� �
Z c�i1

c�i1

dM
2�i

�G0�M� exp	Mt� 
��s;M��
; (9)

where the kernel 
 is related to � by

 
	�s; ���s; N�
 � N; (10)

and �G0�M� is determined in terms of the boundary condi-
tionG0�N� and the anomalous dimension �. Evaluating the
integral (9) by saddle point and then Taylor expanding
reproduces the argument for geometric scaling of
Ref. [2]. However, Eq. (8) shows that the ‘‘saturation’’
assumption of Refs. [2,7] that the boundary condition
satisfies GS is redundant: rather, GS follows from the
existence of � such that f��� � 0 in Eq. (8). This is a
generic property of perturbative evolution. Eq. (9) can be
equivalently viewed as the solution to the BFKL or
DGLAP equations, and our conclusion applies to both.

We conclude that GS holds for the solution to the
DGLAP equation at the fixed-coupling level, which ex-
plains the GS properties of the DAS solution Eq. (2), Fig. 2:
this solution is derived with running coupling, but in
practice (see Fig. 1), the value of t along fixed � curves
is almost constant in the data region. It follows that 1

	0
�

ln	�t� �t0�=�t0
 � �s�Q2
0�t, which in turn implies that

Eq. (3) holds with � �
����������������
�	0�st

p
and � �

����������������������
�=�	0�st�

p
,

which coincides with the result found using Eq. (4) in the
approximation Eq. (7). Higher order terms in this expan-
sion lead to GS violations, proportional to powers of
�s�Q2

0�t. The combined effect of GS violations will be
discussed in Fig. 4 below.

A running-coupling form of GS can also be derived [9]
directly for the cross section equations (2) and (3). At the
running-coupling level, we can neglect the variation of
lnt=t0 in � and � in comparison to the scale dependence
ofQ�2 in Eq. (2). Then, the DAS solution (3) only depends
on

���
�
p

, and the cross section (2), consistently neglecting
the variation of ln� in comparison to the variation of �, is a
function of the scaling variable t� �

���
�
p

.
Note that, unlike the fixed-coupling GS in terms of t�

��, Eq. (8), which holds for a generic anomalous dimen-
sion �, this running coupling GS depends on the particular
form of the anomalous dimension Eq. (4), and specifically
on the fact that it has a simple pole at N � 0. However, this
running-coupling GS can also be obtained using the
running-coupling version of Eq. (9) [10,11]

 G��;t��
Z dM

2�i
exp

�
Mt�

�����������������������������������������������
�
�2

R
M
M0

��s;M0�dM0

	0�s

vuut �
;

(11)

τ
-310 -210 -110 1 10 210

to
t* 
p

γ σ

-410

-310

-210

-110

1

10

210

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

Improved DAS solution

DAS solution

Data

FIG. 2 (color online). Geometric scaling for the data of Fig. 1
with ln� � t� �� and Q2

0 � 1 GeV2. Only data with Q2 >
1 GeV2 are in the DAS and improved DAS curves. The DAS
curves are offset for clarity.
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FIG. 3 (color online). Same as Fig. 2, but with ln� � t� �
���
�
p

.
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which holds whenever the kernel 
 Eq. (10) is linear in �s.
This is the case if we only retain the simple pole in the ano-
malous dimension � Eq. (4), but also for a generic leading-
order BFKL kernel, as discussed in Ref. [12]. The argu-
ment leading to GS Eq. (8) can now be repeated: the only
difference is that the saddle point depends on t=

���
�
p

, which
leads to the form ts � �

���
�
p

of the saturation scale.
The arguments so far involved several approximations.

To assess their accuracy, we express the cross section as a
function of ln� � t� �� and the orthogonal combination
� � t� ��. Geometric scaling is the statement that ��

�p
tot

is independent of � :

 

d��
�p

tot

d�
� 0: (12)

By letting � depend on � and t, we can view the condition
(12) as an implicit equation for ���; t�. Geometric scaling
holds to good approximation if the solution ���; t� to
Eq. (12) is approximately constant in � and t in the kine-
matic region of interest.

We see from Fig. 4 that the value of � is almost constant
everywhere, except at low Q2 & 25 GeV2. At low Q2,
large x there are no data (see Fig. 1); while the low Q2,
low x region, where the DAS solution is not applicable,
shall be discussed below. We would now like to test
whether instead in the region Q2 * 25 GeV2 the approxi-
mate GS displayed in Fig. 4 is sufficient to explain the GS
of the data. To this purpose, we use the ‘‘quality factor’’
Q��� which was introduced in Ref. [4] as a measure of the
scaling quality. The optimal value of � is that which max-
imizes Q, and GS is better if Q��� is larger. In practice, the
optimal value of � and the uncertainty on it are determined
by fitting a Gaussian form to Q���. The values used to
produce Figs. 2 and 3, taken from Ref. [4], were deter-
mined thus.

In Fig. 5 we display the quality factor Q���, computed
for all points withQ2 > 25 GeV2, both for the data and the
DAS solution, as well as the result of a Gaussian fit. We see
that GS is actually rather better for the DAS solution than
for the data. However, we also see that the optimal value of
� for the DAS solution is somewhat larger. This explains
why the GS properties of the DAS solution in Fig. 2

actually look a bit worse: the optimal value of � is not
quite the same for the data and for the DAS solution.

To explain this difference, we note [13] that for medium-
large Q2 the DAS approximation can be substantially im-
proved by including the contribution of the smaller eigen-
vector of the anomalous dimension matrix, whereby in
Eq. (2) F2���=��G� �G, where �G��;t��kexp����=��,
with � � 16nf=�27	0� and k � 0:16 is determined from a
fit to the data. The GS plot for this improved DAS solution
is also shown in Fig. 2, and the corresponding quality
factor is displayed in Fig. 5: GS deteriorates slightly for
Q2 > 25 GeV2, but remarkably it now holds for all data of
Fig. 2. Also, the optimal value of � extracted from the data
and the improved DAS solution now agree. This means that
linear leading-order perturbative evolution, as embodied
by the (improved) DAS solution, can actually predict the
optimal choice of saturation scale Eq. (1). Indeed, a
Gaussian fit to the quality factor for the improved DAS so-
lution on all points of Fig. 2 (Q2 > 10 GeV2) gives � �
0:32� 0:05, in perfect agreement with the value ��
0:32�0:06 determined in Ref. [4] from the data. We take
this as very strong evidence that GS for Q2 * 10 GeV2

follows from purely linear perturbative arguments.
A similar analysis based on Eq. (12), but with the

running-coupling form of ln� � t� �
���
�
p

and � �
t� �

���
�
p

leads to the same conclusion. In particular, in
this case we predict � � 1:66� 0:34 to be compared to
the experimental value � � 1:62� 0:25 of Ref. [4].

It remains to be understood why the data still display GS
even at low Q2 where the DAS solution becomes unreli-
able. Figure 4 suggests that the effective value of � which
characterizes perturbative evolution starts growing signifi-
cantly forQ2 & 10 GeV2. Because GS is nevertheless seen
in this data region (see Figs. 2 and 3), one might conclude
that there is some evidence for saturation there.

However, so far we have only used pure leading-order
DGLAP evolution, which fails in this region because it
does not resum small x logarithms. Before concluding that
a saturation-based approach is necessary, we should ad-
dress the issue of small x resummation in the framework of
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FIG. 4 (color online). Values for � determined from Eq. (12).
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FIG. 5 (color online). The quality factor [4] computed for the
points of Fig. 2 with Q2 > 25 GeV2. The solid curve is in each
case the result of a Gaussian fit.
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linear perturbative evolution. The small x resummation of
DGLAP evolution has been recently performed, based on a
suitable matching of the BFKL and DGLAP solutions
[14,15]. For our present purpose, it is enough to consider
the asymptotic small x behavior of these matched solu-
tions, which is essentially determined [11,14] by a qua-
dratic approximation to a running-coupling BFKL
evolution kernel.

As is well known [16], this leads to a solution written in
terms of Airy functionsGA�N; t� if the kernel is linear in �s
(Bateman functions [14] if the nonlinear dependence is re-
tained). One can then extract [11] an anomalous dimension

 �A��s�t�; N� �
d
dt

lnGA�N; t�: (13)

The asymptotic small x behavior of DGLAP evolution at
the resummed level is controlled by the rightmost singu-
larity of �A��s�t�; N� Eq. (13). This singularity turns out to
be a simple pole, located at N � N0�t�.

Neglecting the weak [11] scale dependence of N0 the
predicted asymptotic small x behavior at the resummed
level is

 ��
�p

tot x!0

x�N0

Q2 : (14)

This behavior should hold in a region where Q2 is large
enough for some resummed linear perturbative evolution
from a low-scale boundary condition to have taken place,
say 5 & Q2 & 10 GeV2. In this region, we thus get GS
with � � N0. Typical values of N0 from resummed linear
perturbative evolution are 0:1 & N0 & 0:3 [14]. The GS
properties of the unresummed DAS solution are thereby
extended down to scales of order 5 & Q2 & 10 GeV2.

The scale dependence of N0 can be kept into account by
determining it in an expansion in powers of �2=3

s �t� [11]

 N0�t� � c�s�t�
�

1� z0

�
	2

0

32�2

k
c

�
1=3
�s�t�

2=3 � . . .
�
; (15)

where c � 
q��s;M0�
�s

and k � 1
2�s

@2

@M2 
q��s;M�jM�M0
pa-

rametrize the quadratic BFKL kernel 
q��s;M� at its
minimum M � M0.

Substituting this into Eq. (14) and expanding we see that
the asymptotic form of the cross section is constant on the
curve

 t��� �

���������
4�c
	0

s ���
�

p
�O��1=6�: (16)

This corresponds to the previously discussed running-
coupling form of the saturation scale, with � ������������������

4�c=	0

p
. Realistic [14] values 1 & c & 2 give 1:2 &

� & 1:7. This implies GS along this saturation line, and
approximate GS in the proximity of it. Of course, if we go
very far from this region we end up in the large Q2 region
which we have already discussed.

Hence, thanks to small x resummation the growth Fig. 4
of � at small x for 5 & Q2 & 10 GeV2 is replaced by the
(almost) constant value N0, thus extending GS to this
region, with ts � N0� or ts �

�����������������
4�c=	0

p ���
�
p

.
In conclusion, we have shown that for Q2 * 10 GeV2

standard linear leading-order DGLAP perturbative evolu-
tion explains geometric scaling, and in fact predicts the
value of the constant � which characterizes the saturation
scale Eq. (1). Small x resummation of the linear evolution
equation extends the region where GS is expected to values
of Q2 which are lower, but still within the perturbative
region. For yet lower values of Q2 & 5 GeV2, geometric
scaling, which is observed in the data, cannot be explained
using linear perturbation theory. This is the region � & 0:1
(fixed-coupling ts, Fig. 2) or � & 0:01 (running-coupling
ts, Fig. 3), where the GS plot flattens out. In this region,
geometric scaling may provide genuine evidence for par-
ton saturation.
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