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Two notions of nonclassicality that have been investigated intensively are: (i) negativity, that is, the
need to posit negative values when representing quantum states by quasiprobability distributions such as
the Wigner representation, and (ii) contextuality, that is, the impossibility of a noncontextual hidden
variable model of quantum theory. Although both of these notions were meant to characterize the
conditions under which a classical explanation cannot be provided, we demonstrate that they prove
inadequate to the task and we argue for a particular way of generalizing and revising them. With the
refined version of each in hand, it becomes apparent that they are in fact one and the same. We also
demonstrate the impossibility of noncontextuality or non-negativity in quantum theory with a novel proof
that is symmetric in its treatment of measurements and preparations.
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It is common to assert that the discovery of quantum
theory overthrew our classical conception of nature. But
what, precisely, was overthrown? Being specific about the
way in which a quantum universe differs from a classical
universe is a notoriously difficult task and continues to be a
subject of ongoing research today. This problem has be-
come one of practical concern in quantum information
theory and quantum metrology as insights into the differ-
ences between the two theories help to identify and analyze
information-processing tasks for which quantum protocols
outperform their classical counterparts. The two notions of
nonclassicality with which we shall be concerned in this
article are negativity and contextuality, or more precisely,
the presence of negative values in quasiprobability repre-
sentations of quantum theory [1] and the impossibility of
noncontextual hidden variable models [2]. We argue that
these notions, construed in the traditional manner, are not
sufficiently general and we promote a particular way of
generalizing and revising them. In particular, we argue that
non-negativity in the distributions representing quantum
states is not sufficient for classicality; the conditional
probabilities representing measurements must also be
non-negative. Furthermore, we argue that a classical ex-
planation cannot be ruled out by considering a single
quasiprobability representation, such as the Wigner repre-
sentation [3]; negativity must be demonstrated to hold for
all such representations. Following previous work by the
author [4], we also argue that an assumption of determin-
ism that is part of the traditional notion of noncontextuality
should be excised and that context independence should be
required not just for measurement procedures but for
preparation procedures as well. Under these refinements,
the two notions of nonclassicality are revealed to be
equivalent.

Negativity.—In 1932, Wigner showed that one can rep-
resent a quantum state by a function on phase space, now
known as the Wigner function, having the property that the
marginals over all quadratures (linear combinations of
position and momentum) reproduce the statistics for the

associated quantum observables [3]. This function cannot,
however, be interpreted as a probability distribution over a
classical phase space because for some quantum states it is
not everywhere non-negative. We shall say that such quan-
tum states exhibit negativity in their Wigner representa-
tion. It is commonly thought that such negativity is a good
notion of nonclassicality. However, we argue that it is
neither a necessary nor a sufficient condition for the failure
of a classical explanation.

First, we show that it is not a necessary condition. It is
well known that the original Einstein-Podolsky-Rosen
two-particle state has a positive Wigner representation
[5] so that it can be associated with a classical probability
density over the phase space of the two particles (i.e., over
local hidden variables). However, it has also been shown
that it is possible to violate a Bell inequality with such a
state [6]. How can this be? The resolution of the puzzle is
that one can only have a classical interpretation of an
experiment if both the preparations and the measurements
admit a classical interpretation, and in the experiments in
question, the measurements that one requires—such as
parity measurements—do not admit such an interpretation
because the Wigner representations of the projectors have
values outside of the interval [0,1] and consequently cannot
be interpreted as conditional probabilities. (A similar argu-
ment has been made in Ref. [7].)

Neither is the negativity of the Wigner representation
sufficient for nonclassicality. For example, if one considers
a limited set of preparations and measurements for which
the associated density operators and positive operator val-
ued measures (POVMs) are diagonal in some orthogonal
basis, then the diagonal components may be interpreted as
classical probabilities, yielding a classical explanation of
the experimental statistics. Nonetheless, if the diagonaliz-
ing basis does not consist of quadrature eigenstates—for
instance, if it consists of number eigenstates—then the
Wigner representations of these preparations and measure-
ments will not be positive. More generally, negativity of
the Wigner representation does not demonstrate that there
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is not some other representation with respect to which one
achieves a classical explanation. Note that what is classical
about these explanations is their use of probability theory.
We allow the space of physical states over which the
probabilities are defined to be arbitrary.

Generalizing the notion of negativity.—The lesson of the
above examples is that in evaluating the possibility of a
classical explanation of an experiment, one must consider
the negativity of not just the representation of preparations
but of measurements as well, and one must look at repre-
sentations other than that of Wigner.

There is a natural class of representations that includes
the Wigner representation and that allows one to preserve a
notion of nonclassicality as negativity. We call these ‘‘qua-
siprobability representations’’ and define them by the fol-
lowing features. Every density operator �, a positive trace-
class operator on a Hilbert space H , is represented by a
normalized and real-valued function �� on a measurable
space �. That is, �$ ����� where ��: �! R andR
�����d� � 1. Similarly, every POVM fEkg, a set of

positive operators on H that sum to identity, is represented
by a set f�Ekg of real-valued functions on � that sum to the
unit function on �. That is, fEkg $ f�Ek���g, where
�Ek : �! R and

P
k�Ek��� � 1 for all � 2 �. [The trivial

POVM fIg is represented by �I��� � 1.] Finally, the rep-
resentation must be such that

 Tr ��Ek� �
Z
d�������Ek���: (1)

There are infinitely many such representations one could
define, but popular alternatives to Wigner include the Q
and P representations of quantum optics.

We define a non-negative quasiprobability represen-
tation of quantum theory as one for which

 ����� � 0; �E��� � 0 (2)

for all density operators � and all positive operators E less
than identity (i.e., all possible POVM elements). This
would constitute a classical representation of all possible
preparations and measurements.

Contextuality.—The traditional notion of a noncontex-
tual hidden variable model of quantum theory can be ex-
pressed as follows [4]. Denoting a complete set of variables
in the model by �, and the measurable space of these by �,
one represents every pure quantum state j i by a normal-
ized probability density on �, � ���, and every projector-
valued measure f�kg (the spectral elements of a Hermitian
operator) by a set f��k

���g of f0; 1g-valued indicator func-
tions on �. An indicator function ��k

��� specifies the
probability of outcome k given �. Because some outcome
must occur, indicator functions associated with a complete
set of outcomes sum to 1, i.e.,

P
k��k

��� � 1 for all �. A
f0; 1g-valued indicator function is one for which ��k

��� 2
f0; 1g, so that the outcome of the measurement is deter-
mined by � (rather than being probabilistic). We refer to

this restriction on indicator functions as the assumption of
outcome determinism for sharp measurements. Note that
this assumption is part of the traditional notion of non-
contextuality (a point to which we shall return). Finally, in
order for the hidden variable model to reproduce the
probability of outcome k given  , one requires thatR
d�� �����k

��� � h j�kj i.
To see why such a model is called ‘‘noncontextual’’,

note that whenever one of the �k has rank two or greater, it
can be decomposed into a sum of smaller rank projectors in
many different ways, and each of these corresponds to a
different way of implementing the measurement—a differ-
ent context. The representation of the measurement in the
hidden variable model is presumed to depend only on the
�k, and not on how the measurement was implemented.
The representation is therefore independent of the context,
hence noncontextual. The Bell-Kochen-Specker theorem
establishes that such a representation of quantum theory is
impossible [2].

Generalizing the notion of contextuality.—As argued in
detail in previous work [4], the issue of whether a mea-
surement’s representation in the model is context-
dependent or not can and should be separated from the
issue of whether the outcome of the measurement is de-
termined uniquely or only probabilistically by �. Thus,
whereas traditionally the question of interest is whether
or not the measurement outcome for a given � depends on
the context of the measurement, we claim that the interest-
ing question is whether the probabilities of different out-
comes for a given � depend on the context. This is
analogous to Bell’s generalization of the notion of locality
from measurement outcomes being causally independent
of parameter settings at spacelike separation to the proba-
bilities of measurement outcomes being so. Mathemati-
cally, the proposed generalization corresponds to dropping
the assumption of outcome determinism for sharp mea-
surements from the definition of noncontextuality (by not
requiring that ��k

��� be f0; 1g-valued).
The fully general definition of a noncontextual hidden

variable model requires that all procedures—preparations,
transformations, and both projective and nonprojective
measurements—are represented in a manner that depends
only on how the procedure is represented in the quantum
formalism. If two procedures differ in ways that are not
reflected in the quantum formalism we call this difference
part of the context of the procedure.

To be specific, the assumption of preparation noncon-
textuality is that the probability distribution �P��� associ-
ated with a preparation procedure P depends only on the
density operator � associated with P, i.e., �P��� � �����.
For instance, if the preparation is a mixture of pure states
j kiwith weightswk, then the distribution depends only on
the average density operator � �

P
kwkj kih kj and not

the particular ensemble. Similarly, the assumption of mea-
surement noncontextuality is that the indicator function
�M;k��� representing outcome k of a measurement proce-
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dure M depends only on the associated POVM element Ek,
i.e., �M;k��� � �Ek���.

In order to highlight the content of the assumption of
noncontextuality, it is useful to formalize the assumptions
that define a hidden variable model of quantum theory. In
fact, the set of models that we characterize includes the
case wherein the quantum state is a complete description of
reality and so it is better to refer to these simply as
‘‘ontological models’’. Every preparation procedure P
that is permitted by the theory is represented by a normal-
ized and positive function on a measurable space �, and
every measurement procedure M is represented by a set of
positive functions on � that sum to unity. Specifically,
we have P$ �P���, where �P: �! R such thatR

� �P���d� � 1, and M $ f�M;k���g, where �M;k: �!
R such that

P
k�M;k��� � 1 for all � 2 �, and

 �P��� � 0; �M;k��� � 0: (3)

Finally, let P � denote all preparation procedures consistent
with the density operator �, and MfEkg all measurement
procedures consistent with the POVM fEkg. An ontological
model of quantum theory is such that for all P 2 P �, and
for all M 2MfEkg,

 

Z
d��P����M;k��� � Tr��Ek�: (4)

A noncontextual ontological model of quantum theory
(in our generalized sense) is one that satisfies

 �P��� � ����� for all P 2 P � (5)

 �M;k��� � �Ek��� for all M 2MfEkg: (6)

Equations (5) and (6) codify the assumptions of noncon-
textuality for preparations and measurements, respectively.

Whatever reasons one can provide in favor of the as-
sumption of measurement noncontextuality [for instance,
that it is the simplest possible explanation of the context
independence of the right-hand side of Eq. (4)], the very
same reasons can be given in favor of the assumption of
preparation noncontextuality. Thus if one takes noncontex-
tuality for measurements as a condition for classicality,
then noncontextuality for preparations should also be
required.

Equivalence of the two notions of nonclassicality.—By
substituting the conditions for preparation and measure-
ment noncontextuality, Eqs. (5) and (6), into the conditions
for an ontological model, Eqs. (3) and (4), we obtain the
conditions for a non-negative quasiprobability representa-
tion of quantum theory, Eqs. (1) and (2). So we see that by
these definitions, a noncontextual ontological model of
quantum theory exists if and only if a non-negative quasi-
probability representation of quantum theory exists.

What we have discovered by this analysis is that the
assumption of noncontextuality (in our generalized sense)
has always been implicit in the notion of a quasiprobability
representation. Given its conceptual significance and

mathematical simplicity, it is surprising that this connec-
tion has not been noted previously. Two likely reasons for
this are: (i) the lack of emphasis on the representation of
measurements in discussions of negativity, and (ii) the lack
of a generalization of contextuality to preparations and
nonprojective measurements and the failure to distinguish
the assumption of measurement noncontextuality from that
of outcome determinism.

No-go theorems for non-negativity or noncontextual-
ity.—An ontological model of quantum theory that is non-
contextual, in the generalized sense described here, is
impossible [4]. It follows that a non-negative quasiprob-
ability representation of quantum theory is also impossible.
This fact is unlikely to surprise those who know quantum
theory well. Nonetheless, to our knowledge, it has not been
demonstrated previously (although Montina [8] came close
to doing so, as we discuss in the conclusions).

An unfortunate feature of existing no-go theorems for
noncontextual models is that they do not proceed directly
from the assumption of generalized noncontextuality to a
contradiction. For instance, in Ref. [4], it is shown that one
can base such a proof on the Bell-Kochen-Specker theo-
rem; however, the contradiction is derived not only from
the assumption of noncontextuality for sharp measure-
ments, but also the assumption of outcome determinism
for sharp measurements, and the latter assumption is in
turn derived from noncontextuality for preparations. So,
despite the standard impression that these no-go theorems
concern only the representation of measurements, we see
that the representation of preparations enters the analysis in
an indirect way. Similarly, in no-go theorems that appeal
only to the assumption of noncontextuality for preparations
([4], Sec. IV), one still relies on the fact that only prepa-
rations associated with probability distributions that are
nonoverlapping can be discriminated by a single-shot mea-
surement. Thus the representation of measurements has
appeared, in an indirect way, within a proof based primar-
ily on the representation of preparations. A proof that is
even handed in its treatment of preparations and measure-
ments would be preferable and we now provide one.

An even-handed no-go theorem for non-negativity or
noncontextuality.—Suppose that one has a set of prepara-
tion procedures associated with density operators �j. A
procedure associated with the mixture � �

P
jwj�j can be

implemented as follows. Sample an integer j from the
probability distribution wj and implement the preparation
procedure associated with �j. If the distributions over �
that represent each of these procedures in the ontological
model are denoted by ��j���, then clearly the distribution
that represents the mixture � is ����� �

P
jwj��j���.

Thus in a noncontextual ontological model,

 if � �
X
j

wj�j; then ����� �
X
j

wj��j���: (7)

A similar argument concerning a mixture of measure-
ments, each of which has a distinguished outcome associ-
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ated with a positive operator Ej, establishes that in a non-
contextual ontological model,

 if E �
X
j

wjEj then �E��� �
X
j

wj�Ej���: (8)

A function f on the space L�H � of linear operators on
H is convex linear on a convex set S � L�H � if
f�
P
kwkRk� �

P
kwkf�Rk�, for Rk 2 S where wk is a

probability distribution. Equations (7) and (8) assert that
� as a function of � is convex linear on the convex set of
density operators, and � as a function of E is convex linear
on the convex set of positive operators less than identity.

The first two steps of the no-go theorem are familiar as
key elements of the generalization of Gleason’s theorem
[9] to POVMs [10,11] and analogous reasoning plays an
important role in Hardy’s axiomatization of quantum the-
ory [12]. The first step is to note that a function f that is
convex linear on a convex set S of operators that span the
space of Hermitian operators (and that takes value zero on
the zero operator if the latter is in S) can be uniquely
extended to a linear function on this space. Specifically,
if A is a Hermitian operator that can be decomposed as A �P
kakRk, where Rk 2 S, then the extension is f�A� �P
kakf�Rk�.
The second step is to note that by Reisz’s representation

theorem, the linear function f�A� can be written as the
Hilbert-Schmidt inner product of A with some fixed
Hermitian operator, say By, so that f�A� � Tr�AB�.

It follows that

 ����� � Tr��F����; �E��� � Tr�����E�; (9)

where F and � are functions from � to the Hermitian
operators on H .

A noncontextual ontological model, or equivalently, a
non-negative quasiprobability representation, is one for
which ����� � 0 and �E��� � 0 for all � and E, which
implies that the operators F��� and ���� are not merely
Hermitian but positive as well. Given that

R
�����d� � 1,

it follows that
R
F���d� � I, and so we can conclude that

F���d� is a POVM. Furthermore, given that �I��� � 1 for
all �, we also have Tr������ � 1 and so we can conclude
that � is a map from � to density operators.

We now show, using a proof by contradiction, that�����
and �E��� of this sort cannot reproduce the quantum
predictions. To do so, ����� and �E��� would need to
satisfy Eq. (1), which implies, via Eq. (9), thatR
d�Tr��F����Tr�����E� � Tr��E� for all � and E.

Given that the set of density operators spans the operator
space L�H �, we can infer that E �

R
d��E���F���; i.e.,

every E is a positive combination of the F���. Now con-
sider a POVM fEkg with rank-1 elements. Any given
element Ek is a positive combination of the F���, specifi-
cally, Ek �

R
d��Ek���F���. However, a rank-1 positive

operator admits only trivial positive decompositions into
positive operators (namely, into ones that are proportional
to itself). It follows that F��� / Ek for all � in the support

of �Ek . Recalling that for every � 2 �, there exists a k such
that � is in the support of �Ek , it follows that for every � 2
�, there exists a k such that F��� / Ek. Repeating the
argument for another POVM with rank-1 elements, say
fE0jg, we conclude that for every � 2 �, there exists a j
such that F��� / E0j. However, given that no element of
fEkg needs to be proportional to any element of fE0jg (for
instance, they may be the projector-valued measures cor-
responding to two bases having no elements in common),
we arrive at a contradiction.. [Noting from Eqs. (1) and (9)
that fF���g and f����g are dual frames in the operator
space, this result implies that the dual of a frame of positive
operators cannot also be a frame of positive operators. A
direct proof of this fact is possible [13] and provides a
faster route to the contradiction.]

A similar argument to the one just provided can be found
in the recent work of Montina [8], where it is demonstrated
that to avoid negative probabilities in ontological models,
the representation of pure states cannot depend bilinearly
on the wave function. Although the representation of
mixed quantum states is not discussed, it is a short step
from this result to a demonstration of a failure of prepara-
tion noncontextuality [14].

Attempts to characterize nonclassicality from either the
perspective of hidden variables or that of quasiprobability
representations drive one to the same conclusion: that the
only way in which one can salvage the possibility of an
ontological model is to deny the implicit starting point of
these representations, the assumption of noncontextuality.
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