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B.P. 166, F-38042 Grenoble, France

(Received 23 April 2008; revised manuscript received 9 June 2008; published 3 July 2008)

We investigate the ac transport of magnetization in nonitinerant quantum systems such as spin chains
described by the XXZ Hamiltonian. Using linear response theory, we calculate the ac magnetization
current and the power absorption of such magnetic systems. Remarkably, the difference in the exchange
interaction of the spin chain itself and the bulk magnets (i.e., the magnetization reservoirs), to which the
spin chain is coupled, strongly influences the absorbed power of the system. This feature can be used in
future spintronic devices to control power dissipation. Our analysis allows us to make quantitative
predictions about the power absorption, and we show that magnetic systems are superior to their electronic
counterparts.
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Power dissipation is one of the most important limita-
tions of state-of-the-art electronic systems. The same is
true for spintronic devices in which spin transport is ac-
companied by charge transport. In nonitinerant quantum
systems, the dissipation problem is reduced, since true
magnetization transport generates typically much less
power than charge currents [1,2]. This is one of the main
reasons for putting so much hope and effort into spin-based
devices for future applications [3–5]. Here we analyze
nonitinerant quantum systems described by a spin
Hamiltonian in which ac magnetization transport occurs
via magnons or spinons (without the transport of charge).
In Ref. [6], the spin conductance of such a device has been
derived. We generalize this theory to the response to an ac
magnetization source. This allows us to directly calculate
(and thus estimate) the power absorption of such magnetic
systems at a given driving frequency ! using linear re-
sponse theory. In general, the exchange coupling J in the
spin chain and in the reservoirs will be different; see Fig. 1.
It turns out that the difference of the exchange coupling
plays a crucial role in the dependence of the absorbed
power as a function of !. The larger the difference, the
stronger will be the suppression of power dissipation at
finite frequencies. At low frequencies, however, the dis-
sipative power is independent of the difference of the
exchange couplings and takes a universal value determined
by J in the reservoirs.

We analyze the ac transport problem in quantum spin
chains by a mapping of the spin Hamiltonian coupled to
magnetization reservoirs to the so-called inhomogeneous
Luttinger liquid (LL) Hamiltonian [7–9]. Interestingly, the
absorbed power that is derived in this Letter has an aston-
ishingly simple dependence on the interaction parameters
of the LL model; see Eq. (11) below. In order to describe
the system shown in Fig. 1, we consider a one-dimensional
XXZ spin chain in the presence of a time-dependent mag-
netic field B�xi; t� � Bi�t�ez which can be described by the

Hamiltonian H � HXXZ �HB�t�, where

 HXXZ � J
X
hi;ji

�si;xsj;x � si;ysj;y � �si;zsj;z�; (1)

 HB�t� � ge�B

X
i
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Here si;� is the� component of the spin operator at xi, hi; ji
denotes nearest-neighbor sites, ge is the g factor, �B is
Bohr’s magneton, and we assume antiferromagnetic cou-
pling with J;�> 0. A possible realization of spin chains
described by HXXZ is, for instance, a bulk structure of
KCuF3 or Sr2CuO3, where the exchange among different
chains in the crystal is much weaker than the intrachain
exchange [10–12]. The Hamiltonian HXXZ can be mapped
onto a LL of spinless fermions [13–15]
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FIG. 1 (color online). Schematic of a quantum spin chain
coupled to magnetization reservoirs. The magnetic field bias
�B changes periodically in time. In the upper part of the figure,
we illustrate that the exchange coupling in the spin chain Jsc (for
jxj<L=2) can, in general, be different from the exchange
coupling in the gray-shaded magnetization reservoirs Jres. As
suggested in Ref. [6], this setup can be realized by a bulk
material with an intrachain exchange much stronger than the
interchain exchange, where the material is heated to a tempera-
ture T > TN in the central part and cooled to T � TN in the
reservoir parts. (TN is the 3D Néel ordering temperature.)
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where we have ignored umklapp scattering [16] and made
the identifications v � vB=g, vB � Ja sin�kBa�=@, and
g � �1� 4�=���1=2 (a is the lattice constant). In
Eq. (3), ’�x� is the standard Bose field operator in boson-
ization associated with spinon excitations here, ��x� its
conjugate momentum density, v the spinon velocity, vB the
bare spinon velocity (at � � 0), kB the bare spinon wave
vector, and g the interaction parameter (g � 1 correspond-
ing to a noninteracting system, i.e., � � 0, and, in general
for a HXXZ spin chain, 1=2 	 g 	 1) [17,18].

In order to be able to properly describe the effect of
reservoirs, we modify the Hamiltonian HLL in the spirit of
the inhomogeneous LL model [7–9] described by a
Hamiltonian HILL, where we assign a spatial dependence
to v and g such that v�x� � vl and g�x� � gl are the spinon
velocity and the interaction parameter in the reservoirs (for
jxj> L=2), respectively, and v�x� � vw and g�x� � gw are
the corresponding quantities in the spin-chain region (for
jxj< L=2). Within this model, nonequilibrium transport
phenomena such as the nonlinear I � V characteristics and
the current noise in the presence of impurities have been
analyzed extensively [19–23]. Here we are interested in ac

magnetization transport which should be seen complemen-
tary to the electric ac response analyzed in Refs. [24,25].
The Hamiltonian HB�t� describes a spatially varying and
time-dependent magnetic field �B�x� cos�!t�ez, with
�B�x� � ��B=2 (�B=2) for x <�L=2 (x > L=2). For
jxj< L=2, �B�x� interpolates smoothly between the values

�B=2 in the reservoirs [26]. The dc (! � 0) magnetiza-
tion transport of such a system has been analyzed in
Ref. [6], and a spin conductance Gs � gl�ge�B�

2=h has
been predicted.

The magnetization current in linear response to an os-
cillating magnetic field can be evaluated using the follow-
ing expression:

 Im�x; t� �
Z 1
�1

d�
Z 1
�1

dy�0�x; y; ��@y�B�y; t� �� (4)

with the spin conductivity
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and the expectation value is taken with respect toHILL. For
x > L=2 and jyj 	 L=2, we obtain
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where � � �gl � gw�=�gl � gw� is the reflection coefficient of spinon excitations at a sharp boundary with different
interaction coefficients gl and gw [9] and ���� the Heaviside function. The resulting spin current under continuous wave
radiation reads
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We clearly observe an interaction dependence of the magnetization current in Eq. (7) through gl and �. The presence of
higher harmonics due to higher order terms in �m would be a strong experimental evidence for the spatial inhomogeneity
of spin-spin coupling in realizations of XXZ spin chains. The physics behind the result in Eq. (7) is the following one: The
system is driven with a continuous wave due to the ac magnetization source; therefore, spinon excitations constantly enter
and leave the spin chain from and to the reservoirs. Whenever they experience a boundary in the exchange interaction, they
are partly transmitted and partly reflected with a reflection coefficient �. The resulting expression (7) is the superposition
of all possible contributions to the spin current after infinitely many reflection processes.

As a natural consequence, one may wonder whether an initial magnetization signal is actually transmitted through the
spin chain. This depends crucially on the value of �. To answer this question, we look at the magnetization current in linear
response to a unit pulse described by @y�B�y; t� � �Bp��p��t� t0���y� y0�, with y0 2 ��L=2; L=2� (where �Bp corre-
sponds to the height and ��p to the duration of the pulse). If we insert this expression into Eq. (4), we obtain for the spin
current
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The form of I�pul�
m �x; t� shows that the initially sharp � pulse

is decomposed into a sum of infinitely many � pulses.
Importantly, the amplitude of these pulses decreases by a
factor � in a stepwise fashion once in each time interval
L=vw corresponding to the transit time in the wire. So, to
answer the question of how much signal has been trans-
mitted, we have to fix x, y0, t0, and � in Eq. (8) and sum up
all of the prefactors of the � functions that can be nonzero
in a given time interval between t0 and t. This analysis
implies that all of the dissipation happens in the leads and
intrinsic relaxation is absent, which is related to the fact
that the LL Hamiltonian describes a free boson [27]. All of
our results in the absence of scatterers are temperature-
independent and also hold for finite temperatures within
the validity regime of our model, which is kBT � J. In the
presence of impurities, the situation is different. Then,
intrinsic dissipation matters and temperature-dependent
corrections due to impurity scattering arise; see below.

We now turn to the discussion of the power absorption
under continuous wave radiation. We derive the absorbed
power of the 1D spin chain using Fermi’s golden rule and
linear response theory. The resulting expression is

 W�!� �
1

2

�Z L=2

�L=2
dx
Z L=2

�L=2
dyRe�0�x; y;!�

����������B
L

��������
2
;

(9)

where

 Re�0�x; y;!� � gw
�ge�B�

2

h

�
cos� ~!�~x� ~y��

�
2��1� �2� cos� ~!� cos� ~!�~x� ~y��

1� �4 � 2�2 cos�2 ~!�

�
2�2 cos� ~!�~x� ~y���cos�2 ~!� � �2�

1� �4 � 2�2 cos�2 ~!�

�
;

(10)

and we have introduced dimensionless variables ~x � x=L,
~y � y=L, and ~! � !=!L, with !L � vw=L. It is straight-
forward to do the two remaining integrals in Eq. (9), and
the final result reads

 W�!� � gw
�ge�B�B�2

2h

�
sin� ~!=2�

~!=2

�
2

�
1� �4 � 2��1� �2� cos� ~!�

1� �4 � 2�2 cos�2 ~!�
: (11)

This is the main result of our work. It demonstrates that a
measurement of the absorbed power due to ac response of
the quantum spin chain is a feasible way to measure
interaction-dependent coefficients such as gw and �. In
Fig. 2, we show the interaction dependence of the absorbed
power W�!�. It demonstrates that stronger repulsive inter-
actions inside the wire with respect to the leads suppress
the dissipative power.

If we compare Eqs. (7) and (11), we observe an interest-
ing finite-size effect, namely, that W�!� vanishes as

�sin� ~!=2��2 close to ~! � 2�, whereas the leading contri-
bution to I�cw�

m �x; t� vanishes only as sin� ~!=2� close to that
driving frequency. Thus, the power absorption is more
strongly suppressed than the magnetization current at fre-
quencies close to 2�!L. This feature can be used in future
devices to transfer data at special frequencies with low
power dissipation. In the limit !! 0, we obtain W�0� �
gl�ge�B�B�2=2h corresponding to Joule heating, where
W�0� � I2

m�! � 0�=�2Gs�.
We now address the robustness of our main result (11)

against impurity scattering. An impurity can be modeled as
an altered link in the HXXZ chain, i.e., a local change in J
on a nearest-neighbor link [28,29]. Within bosonization,
such a scatterer at position x0 in the system can be written
as HI � � cos�

�������
4�
p

’�x0; t� � 2kBx0�. If one of the two
energy scales @vw=L or @! is larger than � (the bare
impurity strength), we can treat HI perturbatively up to
lowest nontrivial order (which is second order in �). In the
presence of impurity scattering, the spin conductivity that
enters into the calculation of Eq. (9) is subject to a (small)
correction �I�x; y;!� given by Eq. (46) of Ref. [22]. For
finite frequencies, �I�x; y;!� needs to be evaluated nu-
merically. In the zero frequency limit, we find power-law
corrections to the spin conductance (see Refs. [30,31] for
the corresponding electric case) resulting in power-law
corrections to the absorbed power. As a result, as long as
@vw=L or @! is larger than �, the effect of impurity
scattering is negligibly small.

The system which we considered previously consists of
a spin chain smoothly connected to reservoirs. One may
wonder how the previous result gets modified for isolated
finite-size spin chains, to which a time-dependent oscillat-
ing magnetic field is applied along the chain [such that
dB�x; t�=dx � �B cos�!t�]. For long Heisenberg chains,
HXXZ still maps onto a LL of spinless fermions as in Eq. (3)
but with open boundary conditions (OBC). Using the
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FIG. 2 (color online). The absorbed power is shown in units of
W0 
 �ge�B�B�2=2h as a function of the ac frequency ! in
units of the ballistic frequency !L � vw=L. It is clearly visible
that stronger repulsive interactions inside the wire decrease the
absorbed power in the system.
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formalism described in Ref. [32], we find after lengthy
but straightforward calculations that the real part of the
conductivity for such an isolated system is given by
Re�OBC

0 �x;y;!��2gw
�ge�B�

2

h sin�!x=vw�sin�!y=vw� for
! � !n 
 �nvw=L [n � 1; . . . ; �L� a�=a] and 0 other-
wise. From this expression, we obtain the power needed to
periodically ‘‘shake’’ the spin-chain excitations, using
Eq. (9),

 WOBC�!� � gw
�ge�B�B�2

h

�
sin� ~!=2�

~!=2

�
2
sin2� ~!=2� (12)

for ~! � !n=!L and 0 otherwise. Note that this power
cannot be identified as dissipative power because a dis-
connected LL does not contain a dissipative term. This is
the major difference from the case with leads, i.e., Eq. (11),
where dissipation occurs in the reservoirs.

Let us now compare typical values for the absorbed
power in electric systems versus magnetic systems. We
set gl � gw � 1 for simplicity but keep in mind how fi-
nite interactions change the power absorption according
to Eq. (11). The absorbed electric power in the dc limit
is given by Wel � �e�V�2=h. For a typical electric bias
of �V � 1 mV, we obtain Wel � 3:87� 10�11 J s�1,
whereas the absorbed magnetic power for a typical mag-
netic bias of �B � 0:1 T is W � 2:59� 10�15 J s�1 (as-
suming ge � 2) which is 4 orders of magnitude smaller.
The rule of the thumb is Wel��V � 0:1 mV� �W��B �
1 T�. Thus, we expect substantial advantages of magnetic
systems versus electric systems as far as power consump-
tion is concerned.

In summary, we have analyzed magnetization current
and power absorption of quantum spin chains coupled to
magnetization reservoirs with a time-dependent magnetic
field applied to the reservoirs. Both quantities depend
crucially on the difference of the exchange interactions
within the wire as compared to the magnetization leads.
In fact, we envision to use this dependence as a way to
control power dissipation in nonitinerant quantum systems
in which magnetization transport occurs via spinons.
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