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Direct numerical simulations are used to examine the locking of quantized superfluid vortices and
normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which
undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow,
although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation
functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length
scales above the intervortex spacing.
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A growing body of empirical evidence suggests that the
macroscopic statistical behavior of quantum turbulence
closely matches that of classical turbulence despite con-
siderable differences in the physics at the mesoscopic scale
of the intervortex spacing and the microscopic scale of the
vortex core diameters [1–3]. Although a commonly used
phenomenology involving quantum-vortex/normal-vortex
locking has achieved some success in explaining the mac-
roscopic similarities, current laboratory measurements
lack sufficient spatial resolution to verify vortex locking.
We therefore turn to numerical simulations to confirm the
existence and explore the limitations of this phenomenol-
ogy. Previous numerical simulations have considered the
special case of a superfluid in the presence of a static
normal fluid flow field. Barenghi et. al. [4] utilized an
idealized normal fluid turbulent field based on vorticity
tubes, which drove a superfluid vortex ring. In the presence
of mutual friction and vortex wave instabilities, the flow
evolved into a vortex tangle with a higher filament density
and a configuration exhibiting a clear alignment of the
superfluid vortex filaments along the normal fluid vortices.
Kivotides [5] found similar results using a different driving
force for the superfluid, based on a snapshot of a statisti-
cally isotropic and homogeneous turbulent state held con-
stant in time while the superfluid was allowed to evolve. In
this work, we consider a more realistic situation in which
coupled time-dependent normal fluid and superfluid com-
ponents evolve simultaneously.

Our results are obtained from a direct numerical simu-
lation (DNS) of the dynamics of a one-way coupling
between normal fluid and superfluid, in which the super-
fluid reacts to the normal fluid due to the effects of mutual
friction, but the back reaction of the superfluid on the
normal fluid is omitted. A fully coupled calculation would
involve severe computational difficulties due to the huge
disparity in length scales between the superfluid vortex
core size and the numerical resolution of any feasible
normal fluid turbulence calculation. Fully coupled calcu-

lations have only been performed for very simple geome-
tries [6,7]. Computations for the normal fluid component
are generated by a DNS of the Navier-Stokes equations.
For the superfluid, we adapt methods developed by
Schwarz [8] and use parameter values taken from mea-
surements of He4 at a temperature below the lambda point.
The governing equations for the superfluid are based on the
two-fluid model of Tisza and Landau [9,10],
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� ui � �s0 � �un � ui� � �0s0 � �s0 � �un � ui�	;

(2)

where un is the velocity of the normal fluid component, ui
is the induced velocity on a vortex filament. The filament
itself is parametrized as s��; t�, where � is the arclength
and t is the time, s0 � ds=d�, and � and �0 are mutual
friction coefficients which depend on the temperature of
the fluid. The induced velocity ui is calculated using the
Biot-Savart law, and the singularity in the latter when
source and observation points nearly coincide is dealt
with by separating the integral into local and nonlocal
contributions [8,9]. The superfluid vortex filaments are
remeshed at each time step in the simulation to maintain
a near-constant spacing between grid points, to provide an
accurate representation of the filaments as they stretch and
transform their shape. When two vortex filaments intersect,
they are reconnected provided the total vortex line length
decreases [9,11], a rule motivated by the connection be-
tween energy and vortex line length. During the reconnec-
tion of two intersecting superfluid vortex filaments sound
energy is released which leads to a loss of vortex line
length [12]. This transfer of energy within the turbulent
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vortex tangle has also been related to the radiation of
Kelvin waves [13].

The first case considered here involves an evolving
Taylor-Green flow with no forcing, so the flow dies out
over time. During an intermediate interval within this
process, the flow attains a quasisteady state condition
characterized by a nearly constant Taylor microscale
Reynolds number. The Taylor-Green flow has been used
previously to study the generation of small energy scales
from large ones in classical turbulence [14,15]. In the
current case, the DNS was carried out at a temperature of
T � 2:1 K with the following fluid properties: quantum of
circulation � � 9:97
 10�4 cm2=s, core radius a0 �
10�8 cm, � � 0:498, �0 � �0:030, and �n=� � 0:749
where �n is the density of the normal fluid component
and � is the density of He II at the working temperature
[2,16]. The DNS of the normal fluid component is per-
formed on a grid of 2563 points, and its initial condition
takes the form un � sin�x� cos�y� cos�z�i� cos�x�

sin�y� cos�z�j� 0k. The initial configuration for the su-
perfluid component is a collection of 10 identical rings
randomly oriented, with a radius of 0.159 cm. Results as
the flow commences its decay at t � 24:1 s are shown in
Fig. 1, indicating the obvious visual similarity of the
superfluid and normal fluid vorticity fields.

To quantify the relationship between the two compo-
nents and assess the degree of vortex locking, we define a
vorticity correlation coefficient for the normal fluid and
superfluid components as

 r �
hwswni����������������������
hws

2ihwn
2i

p ; (3)

where wn and ws are either the magnitudes or individual
vector components of the normal fluid and superfluid
vorticity, respectively. The computational box which has
a size of 1 cm in every direction is divided into cells of
variable size to compute the correlation coefficient as a
spatially averaged function of length scale. Since the vor-

ticity of the superfluid component is confined to the vortex
filaments the total superfluid vorticity of a cell is calculated
by summing the contributions of the filaments within it.
For the normal fluid component, the vorticity field is first
denoised via wavelet transforms to extract the coherent
vortex structures [17], the total vorticity of the cells is then
inserted in (3). Figure 2(a) depicts the evolution over time
of the correlation coefficient, which shows temporally
increasing correlations for both the magnitude and the
direction of the vorticity. The growth of the correlations
with time indicates that the superfluid filaments become
increasingly locked to the normal fluid vorticity. To ex-
plore the degree of correlation as a function of length scale
we calculate the various correlations ri for the vorticity (wn
and ws) within cubic cells of linear size �. The numerical
analysis was done after the aforementioned quasisteady
state was reached, when decay starts at t � 24:1 s and
the results are plotted in Fig. 2(b). We see that the corre-
lations are weak for small cell size but grow roughly as����

�
p

, and, in particular, become quite strong once � exceeds
the average intervortex spacing � � 0:308. (We estimate �
from the total vortex line length L and simulation box
volume V as � �

����������
V=L

p
and is given relative to the box

size.) For the normal fluid component the Kolmogorov
length scale at t � 24:1 s is � � 0:031 cm when calcu-
lated based on � � lRe�3=4 where l is half the computa-
tional box size and Re � �urmsl=vn� � �urmsl�n=��. Next
we consider superfluid coupled to a normal fluid in a
statistically homogeneous and isotropic turbulent flow
maintained by linear forcing at a Taylor microscale
Reynolds number of 42 [18,19]. The governing equation
for the normal fluid component is the forced Navier-Stokes
equation

 

@un
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�
rP� �nr2un � F (4)

where the forcing term F � Aun � �"=3u2
rms�un is related

to the energy dissipation rate " � ��nhun � r2uni and the

FIG. 1 (color online). Vorticity plots of Taylor-Green flow for He II at T � 2:1 K, and t � 24:1 s. (a) Superfluid vortex filaments.
(b) Normal fluid vorticity isosurface.
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rms velocity u2
rms � hun � uni=3. In this case we allow the

normal fluid to reach a statistically stationary state before
introducing the superfluid component. The superfluid ini-
tial configuration is the same as in the Taylor-Green flow—
a random collection of vortex rings. The simulation here
was done at a temperature of T � 2:1 K with the same
fluid properties as previously stated. For the normal fluid
the dimensionless viscosity is � � 4:491
 10�3 and the
forcing coefficient is A � 0:1333. The initial vortex line
length in this flow is L0 � 9:98 cm and during the simu-
lation as the energy of the normal fluid component is
transferred to the superfluid component the vortex length
grows to Lf � 1533 cm. In the final configuration the
average vortex spacing for the superfluid tangle is � �
0:16 (given relative to box size) while in the normal fluid
component the Kolmogorov length scale is � � 0:007 cm.
An example of direct visualization of vortex locking is
given in Fig. 3, which shows a cut through the computa-
tional box at t � 5:65 s. While there is certainly some
apparent similarity in the two figures, because of the high
vortex line density and the increased randomness of this
flow, vortex locking is not as visually obvious as in the

previous case. However, a numerical analysis of correla-
tions similar to the one done in the Taylor-Green case
confirms locking of the vortices.

The time evolution of the correlation coefficients in this
case is similar to that shown in Fig. 2(a), and as before we
find a monotonic increase in the vorticity correlation over
time. To analyze our final configuration we again consider
the correlation of vorticity as a function of cell size �. In
Fig. 4(a) we see that the correlation is large when the
vorticity is calculated over a length scale larger than the
average vortex line spacing. A direct visualization of this
correlation in cells of size � � 1:571 is given in Fig. 4(b),
and provides a more local indication of vortex locking.

In summary, by performing a DNS of a turbulent helium
flow, we were able to confirm previous conjectures regard-
ing the experimentally observed similarities in the macro-
scopic statistics of classical and quantum turbulence. In the
one-way coupled evolution, the superfluid component ab-
sorbs energy from the normal fluid component, and as a
result of mutual friction and vortex wave instabilities, a
highly dense vortex tangle develops, wherein the superfluid
vortex filaments align with the normal fluid vorticity. This

FIG. 3 (color online). Forced homogeneous isotropic turbulence flow in He4 at a temperature of 2.1 K at t � 5:65 s. (a) Superfluid
vortex filaments. (b) Normal fluid vorticity isosurface.
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FIG. 2 (color online). Vorticity correlations for the Taylor-Green flow in He4 at 2.1 K. (a) Time evolution of the correlation
coefficients of superfluid and normal fluid vorticity; r is the correlation coefficient for the vorticity magnitude and rx;y;z are the
coefficients for individual vector components. The vorticity is computed for a cell size � � 0:785. (b) Length scale dependence of the
correlation coefficients in decaying Taylor-Green flow (t � 24:1 s): � is the cell size and � is the average intervortex spacing (� and �
are given relative to the simulation box size).
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alignment has been shown to be a direct consequence of
Eq. (2) according to which the superfluid vortex lines are
polarized by the normal fluid eddies [20]. Once this align-
ment, or locking, of quantum vortices and classical vortices
has occurred, both components follow a similar motion.
This was directly observed for a linearly forced, isotropic
turbulent flow where the similarities between superfluid
and normal fluid components increased as the flow
evolved. These statistical similarities are most pronounced
for length scales that are large compared to intervortex
spacing.
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FIG. 4 (color online). Vorticity correlations in forced isotropic turbulence flow in He4 at a temperature of 2.1 K at t � 5:65 s.
(a) Correlation coefficient of superfluid and normal fluid vorticity as a function of cell size (� and � are given relative to the simulation
box size). (b) Vorticity vectors for superfluid vortex filaments (arrows) and normal fluid (cones) at t � 5:65 s.
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