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Using recently developed methods for the evaluation of five-loop amplitudes in perturbative QCD,
corrections of order �4

s for the nonsinglet part of the cross section for electron-positron annihilation into
hadrons and for the decay rates of the Z boson and the � lepton into hadrons are evaluated. The new terms
lead to a significant stabilization of the perturbative series, to a reduction of the theory uncertainly in the
strong coupling constant �s, as extracted from these measurements, and to a small shift of the central
value, moving the two central values closer together. The agreement between two values of �s measured
at vastly different energies constitutes a striking test of asymptotic freedom. Combining the results from Z
and � decays we find �s�MZ� � 0:1198� 0:0015 as one of the most precise and presently only result for
the strong coupling constant in order �4

s .
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The strong coupling constant �s is one of the three
fundamental gauge couplings constants of the standard
model (SM) of particle physics. Its precise determination
is one of the most important aims of particle physics.
Experiments at different energies allow us to test the
predictions for its energy dependence based on renormal-
ization group equations; the comparison of the results
obtained from different processes leads to critical tests of
the theory and potentially to the discovery of physics
beyond the standard model. Last but not least, the conver-
gence of the three gauge coupling constants related by
SU�3�xSU�2�xU�1� to a common value, after evolving
them to high energies, allows us to draw conclusions about
the possibility of embedding the SM in the framework of a
grand unified theory.

One of the most precise and theoretically safe determi-
nations of�s is based on measurements of the cross section
for electron-positron annihilation into hadrons. These have
been performed in the low-energy region between 2 and
10 GeVand, in particular, at and around the Z resonance at
91.2 GeV. Conceptually closely related is the measurement
of the semileptonic decay rate of the � lepton, leading to a
determination of �s at a scale below 2 GeV.

From the theoretical side, in the framework of perturba-
tive QCD, these rates and cross sections are evaluated as
inclusive rates into massless quarks and gluons [1,2].
(Power suppressed mass effects are well under control
for e�e� annihilation, both at low energies and around
the Z resonance, and for � decays [3–8], and the same
applies to mixed QCD and electroweak corrections [9,10]).

The ratio R�s� � ��e�e� ! hadrons�=��e�e� !
����� is expressed through the absorptive part of the
correlator of the electromagnetic current j�:

 R�s� � 12�Im���s� i��; (1)

 3Q2��Q2� � i
Z
d4xeiq�xh0jTj��x�j

��0�j0i; (2)

with Q2 � �q2. It is also convenient to introduce the
Adler function as
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We define the perturbative expansions

 D�Q2� �
X1
i�0

dia
i
s�Q

2�; R�s� �
X1
i�0

ria
i
s�s�; (3)

where as � �s=� and the normalization scale is set to
�2 � Q2 or to �2 � s for the Euclidian and
Minkowskian functions, respectively. The results for ge-
neric values of� can be easily recovered with standard RG
techniques.

Note that the first three terms of the perturbative series
for D and R coincide. Starting from r3, terms proportional
�2 arise which can be predicted from those of lower order.
It has been speculated that these ‘‘�2-terms,’’ also called
‘‘kinematical terms,’’ might constitute a major part of the
full higher order corrections (see, e.g., [11,12] and refer-
ences therein); however, the validity of this hypothesis can
only be established by the full calculation. Indeed, for the
scalar correlator this assumption has been shown to fail
[13].

For the vector correlator the terms of order a2
s and a3

s
have been evaluated nearly 30 and about 15 years ago [14–
16], respectively. The a4

s corrections are conveniently clas-
sified according to their power of nf, with nf denoting the
number of light quarks. The a4

sn
3
f term is part of the
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‘‘renormalon chain,’’ the evaluation of the next term, of
order a4

sn
2
f, was a test case for the techniques used exten-

sively in this paper and, furthermore, led to useful insights
into the structure of the perturbative series already [17].

The complete five-loop calculation requires the evalu-
ation of about 20 thousand diagrams (we have used QGRAF

[18] for their automatic generation). Using ‘‘infrared re-
arrangement’’ [19], the R	 operation [20] and the prescrip-
tions formulated in [21] to algorithmically resolve the
necessary combinatorics, it is possible to express the ab-
sorptive part of the five-loop diagrams in terms of four-
loop massless propagator integrals.

These integrals can be reduced to a sum of 28 master
integrals with rational functions of the space-time dimen-
sion D as coefficients. The latter ones were fully recon-
structed after evaluating sufficiently many terms of the
1=D expansion [22] of their representation proposed in
[23]. This direct and largely automatic procedure required
enormous computing resources and was performed using a
parallel version [24] of FORM [25].

In this Letter we present the results for the so-called
‘‘nonsinglet’’ diagrams. These are sufficient for a complete
description of � decays. For e�e� annihilation through a
virtual photon they correspond to the dominant terms
proportional

P
iQ

2
i . The singlet contributions proportional

�
P
iQi�

2 arise for the first time in O��3
s�. They are known to

be small, and will be evaluated at a later point. Similar
comments apply to the singlet contributions in Z decays.

The analytic result for the five-loop term in the Adler
function is given by (we suppress the trivial factor 3

P
fQ

2
f

throughout)
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The knowledge of d4 leads straightforwardly to R at
order �4

s , for brevity given below in numerical form:
 

R � 1� as � �1:9857� 0:1152nf�a2
s

� ��6:636 94� 1:200 13nf � 0:005 18n2
f�a

3
s

� ��156:61� 18:77nf � 0:7974n2
f � 0:0215n3

f�a
4
s :

(5)

It is also instructive to explicitly display the genuine five-
loop contributions to d4 [underlined in (6) and (7)] and the
‘‘kinematical’’ terms originating from the analytic continu-

ation:
 

r3�18:2�24:9���4:22�3:02�nf

���0:086�0:091�n2
f; (6)

 

r4�135:8�292:4���34:4�53:2�nf��1:88�2:67�n2
f

���0:010�0:032�n3
f: (7)

Since it will presumably take a long time until the next
term of the perturbative series will be evaluated, it is of
interest to investigate the predictive power of various opti-
mization schemes empirically. Using the principles of
‘‘fastest apparent convergence’’ (FAC) [26] or of ‘‘minimal
sensitivity’’ (PMS) [27], which happen to coincide in this
order, the central values of the predictions [11,28]

 dpred
4 �nf � 3; 4; 5� � 27� 16; 8� 18;�8� 44

differ significantly from the exact result,

 dexact
4 �nf � 3; 4; 5� � 49:08; 27:39; 9:21: (8)

However, within the error estimates [28], predicted and
exact values are in agreement. The picture changes, once
these estimates are used to predict the coefficient r4.
Although sizable cancellations between ‘‘dynamical’’ and
‘‘kinematical’’ terms are observed for the individual nf
coefficients in (7) the predictions for the final results are
significantly closer (in relative sense) to the results of the
exact calculation:
 

rpred
4 �nf � 3; 4; 5� � �129� 16;�112� 30;�97� 44;

rexact
4 �nf � 3; 4; 5� � �106:88;�92:898;�79:98:

(This is in striking contrast to the case of the scalar corre-
lator, where the predictions for the dynamical terms work
well, but, as a consequence of the strong cancellations
between dynamical and kinematical terms fail in the
Minkowskian region [13].)

Using FAC and the exact result for d4, the coefficients d5

and r5 can be predicted (following [11,28]) for nf � 3, 4,
5, namely

 dpred
5 �nf � 3; 4; 5� � 275; 152; 89; (9)

 rpred
5 �nf � 3; 4; 5� � �505;�134; 168: (10)

These terms may become of relevance for the International
Linear Collider (ILC) running in the GIGA-Z mode with
an anticipated precision of 	�s � 0:0005–0:0007 [29], and
already today for the analysis of � decays.

From the combined analysis of data for ��e�e� !
hadrons� in the region between 3 and 10 GeV a value

 �s�9 GeV� � 0:182� 0:033 (11)

has been obtained recently [30]. The shift in �s from the
inclusion of the �4

s term amounts to 	�s�9 GeV� � 0:003
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and is thus irrelevant compared to the large experimental
error.

The situation is different for Z decays. The analysis of
the electroweak working group [31] is based on Eq. (4)
with nf � 5, including term up to O��3

s� and leads to

 �s�MZ�
NNLO � 0:1185� 0:0026: (12)

Since additional corrections (mixed QCD-electroweak or
mass terms) are only weekly �s dependent we may con-
sider R�s � M2

Z� as a pseudo-observable:

 R�s � M2
Z� � 1:039 04� 0:000 87: (13)

Including the �4
s term leads to a shift 	�s�MZ� � 0:0005

 �s�MZ�
NNNLO � 0:1190� 0:0026exp; (14)

The theory error may either be conservatively based on the
shift produced by the last term (0.0005) or on the scale
variation with �=MZ �

1
3 –3, leading to �0:0002 and can

be neglected in both cases.
Higher orders are of particular relevance in the low-

energy region, for example, in � decays. The correction
from perturbative QCD to the ratio

 R�;V�A �
���! hadronsS�0 � 
��

���! l� �
l � 
��

� 3jVudj2SEW�1� 	0 � 	0EW � 	2 � 	NP� (15)

is given by

 1� 	0 � 2
Z M2

�

0

ds

M2
�

�
1�

s

M2
�

�
2
�
1�

2s

M2
�

�
R�s�: (16)

In the subsequent analysis we will use SEW � 1:0198�
0:0006 and 	0EW � 0:001 for the electroweak corrections,
	2 � ��4:4� 2:0� 
 10�4 for light quark mass effects,
	NP � ��4:8� 1:7� 
 10�3 for the nonperturbative ef-
fects [2,32] and Vud � 0:974 18� 0:000 27 [33].

The perturbative quantity 	0 can be evaluated in fixed
order perturbation theory or with ‘‘contour improvement’’
as proposed in [34,35]

 	FO0 � as � 5:202a2
s � 26:366a3

s � 127:079a4
s ; (17)

 	CI
0 � 1:364as � 2:54a2

s � 9:71a3
s � 64:29a4

s : (18)

[To obtain the �s-dependent coefficients in Eq. (18) we
follow [34–37] and use �s�M�� � 0:334 as reference
value.] For the subsequent analysis we will use as starting
point 	exp

0 � 0:1998� 0:0043exp as obtained from [36]
and R�;V�A � 3:471� 0:011 which in turn is based on
the ’’universality-improved’’ electronic branching ratio
Be � �17:818� 0:032�% and the world average of the
ratio of strange hadronic and electronic widths 0:1686�
0:0047. The new values of �s�M�� in dependence on the
choice of d4 (with the previous estimate and the new exact
result) are summarized in Table I.

As stated above the theory error for �s from Z decays is
small compared to the experimental uncertainties. The
situation is more problematic for � decays and to some
extent the theory error remains to be matter of choice. As
anticipated in [28] it decreases significantly, once �4

s terms
are included. However, the difference between the two
methods stabilizes (this was checked in [28] by adding
an estimate for the �5

s term) and must be considered as
irreducible uncertainty. Given the input specified above we
obtain as our final result

 �s�M�� � 0:332� 0:005exp � 0:015th: (19)

For the central value we take the mean value of FO and CI.
For the theory error we take half of the difference between
two methods (0.01) plus (module of) the estimated correc-
tion from �5

s term (� 0:005), the latter being based on
d5 � 275 [see Eq. (9)].

Applying four-loop running and matching [38–41] to
(19) we arrive at
 

as�MZ� � 0:1202� 0:0006exp � 0:0018th � 0:0003evol

� 0:1202� 0:0019: (20)

Here the evolution error receives contributions from the
uncertainties in the c-quark mass [0.000 03, mc�mc� �
1:286�13� GeV [42] ]and the b-quark mass [0.000 01,
mb�mb� � 4:164�25� GeV [42] ], the matching scale
(0.0001, � varied between 0:7mq�mq� and 3:0mq�mq�),
the four-loop truncation in the matching expansion
(0.0001) and the four-loop truncation in the RGE equation
(0.0003). (For the last two errors the size of the shift due the
highest known perturbative term was treated as systematic
uncertainty.) The errors are added in quadrature.

Summary: The exact result for the �4
s term in the Adler

function allows to extract the strong coupling constant
from Z and � decays with high precision. Including the
exact �4

s leads to small shifts of the central values and to a
significant reduction of the theory uncertainty. Note that
the shifts in �s�MZ� from Z and � decays are opposite in
sign and move the values in the proper direction, decreas-
ing, thus, the current slight mismatch between two inde-
pendent determinations of �s.

TABLE I. Results for �s�M�� for different values of d4. The
first line displays the �3

s results [with the �4
s terms set to zero in

Eqs. (17) and (18)]. The second line uses the previously pre-
dicted value for d4, the last one uses the exact result (4). The first
error is the experimental one; the second (theoretical) uncer-
tainty in the value of �s corresponds to changing the renormal-
ization scale � as follows �2=M2

� � 0:4–2.

�FO
s �M�� �CI

s �M��

� � � 0:337� 0:004� 0:03 0:354� 0:006� 0:02
d4 � 25 0:325� 0:004� 0:02 0:347� 0:006� 0:009
d4 � 49:08 0:322� 0:004� 0:02 0:342� 0:005� 0:01
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The final results

 

�s�MZ�jZ � 0:1190� 0:0026;

�s�MZ�j� � 0:1202� 0:0019

from these two observables, although based on measure-
ments of vastly different energy scales, are in remarkable
agreement. This constitutes a striking test of asymptotic
freedom in QCD. The two values can be combined to

 �s�MZ� � 0:1198� 0:0015:

This is one of the most precise and presently only result in
order �4

s .
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[9] A. Czarnecki and J. H. Kühn, Phys. Rev. Lett. 77, 3955
(1996).

[10] R. Harlander, T. Seidensticker, and M. Steinhauser, Phys.
Lett. B 426, 125 (1998).

[11] A. L. Kataev and V. V. Starshenko, Mod. Phys. Lett. A 10,
235 (1995).

[12] D. V. Shirkov, Theor. Math. Phys. 127, 409 (2001).
[13] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev.
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